Skip to main content

The Entropy of the Universe and the Maximum Entropy Production Principle

  • Chapter
  • First Online:
Beyond the Second Law

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

If the universe had been born in a high entropy, equilibrium state, there would be no stars, no planets and no life. Thus, the initial low entropy of the universe is the fundamental reason why we are here. However, we have a poor understanding of why the initial entropy was low and of the relationship between gravity and entropy. We are also struggling with how to meaningfully define the maximum entropy of the universe. This is important because the entropy gap between the maximum entropy of the universe and the actual entropy of the universe is a measure of the free energy left in the universe to drive all processes. I review these entropic issues and the entropy budget of the universe. I argue that the low initial entropy of the universe could be the result of the inflationary origin of matter from unclumpable false vacuum energy. The entropy of massive black holes dominates the entropy budget of the universe. The entropy of a black hole is proportional to the square of its mass. Therefore, determining whether the Maximum Entropy Production Principle (MaxEP) applies to the entropy of the universe is equivalent to determining whether the accretion disks around black holes are maximally efficient at dumping mass onto the central black hole. In an attempt to make this question more precise, I review the magnetic angular momentum transport mechanisms of accretion disks that are responsible for increasing the masses of black holes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lineweaver, C.H., Egan, C.: Life, gravity and the second law of thermodynamics. Phys. Life Rev. 5, 225–242 (2008)

    Article  Google Scholar 

  2. Niven, R.K.: Minimization of a free-energy-like potential for non-equilibrium flow systems at steady state. Phil. Trans. R. Soc. B. 365, 1323–1331 (2010). (Chap. 7, this volume)

  3. Kleidon, A.: Life, hierarchy and the thermodynamics machinery of planet Earth. Phys. Life Rev. (2010). doi:10.1016/j.plrev.2010.10.002

  4. Hogg, D.W., et al.: Cosmic homgeneity demonstrated with luminous red galaxies. ApJ 624, 54–58 (2005)

    Article  Google Scholar 

  5. Egan, C., Lineweaver, C.H.: A larger entropy of the universe. Astrophys. J. 710, 1825–1834 (2010)

    Article  Google Scholar 

  6. Kolb, E.W., Turner, M.S.: The early universe. Addison-Wesley, New York (1990)

    MATH  Google Scholar 

  7. Bekenstein, J.S.: Generalized second law of thermodynamics in black-hole physics. Phys. Re. D 9, 3292 (1974)

    Google Scholar 

  8. Hawking, S.W.: Black holes and thermodynamics. Phys. Rev. D 13, 191 (1976)

    Google Scholar 

  9. Strominger, A., Vafa, C.: Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. B. 379, 99 (1996)

    Google Scholar 

  10. Basu, B., Lynden-Bell, D.: A survey of entropy in the universe. QJRAS. 31, 359 (1990)

    Google Scholar 

  11. Smoot, G.F., et al.: Structure in the COBE differential microwave radiometer first-year maps. Astrophys. J. 396, L1–L5 (1992)

    Article  Google Scholar 

  12. Jarosik, N., et al.: Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: sky maps, systematic errors, and basic results. ApJS 192, 14 (2011)

    Article  Google Scholar 

  13. Lineweaver, C.H.: A simple treatment of complexity: cosmological entropic boundary conditions on increasing complexity. In: Edt Lineweaver, C.H., Davies, P.C.W., Ruse, M. (eds.) Complexity and the Arrow of Time, Cambridge University Press, pp. 42–67 (2013)

    Google Scholar 

  14. Penrose R.: The big bang and its thermodynamic legacy. In: Road to Reality: A Complete Guide to the Laws of the Universe, pp. 686–734 [Chapter 27]. Vintage Books, London (2004). Plot used in Fig. 1, panel c, from Thomas, A. (2009). http://www.ipod.org.uk/reality/reality_arrow_of_time.asp

  15. Guth, A.H.: The Inflationary Universe. Jonathan Cape, London (1997)

    Google Scholar 

  16. Carroll, S.M.: From Eternity to Here: The Quest for the Ultimate Theory of Time. Dutton, Penguin, New York (2010)

    Google Scholar 

  17. Gron, O., Hervik, S.: Gravitational entropy and quantum cosmology. Class. Quantum Grav. 18, 601–618 (2001)

    Article  MathSciNet  Google Scholar 

  18. Gron, O., Hervik, S. The Weyl Curvature Conjecture, arXiv:gr-qc/0205026v1. (2002)

    Google Scholar 

  19. Amarzguioui, M., Gron, O.: Entropy of gravitationally collapsing matter in FRW universe models. Phys. Rev. D 71, 083011 (2005)

    Article  Google Scholar 

  20. Tegmark, M.: The Second Law and Cosmology, arXiv 0904.3931v1, see video and slides at http://mitworld.mit.edu/watch/the-second-law-and-cosmology-9279/. (2009)

  21. Sagan, C.: Cosmos (1980)

    Google Scholar 

  22. Feynman, R.: Feynman Lectures, vol. I (46-8, -9) (1969)

    Google Scholar 

  23. Davis, T.M., Lineweaver, C.H.: Expanding Confusion: Common Misconceptions of Cosmological Horizons and the Superluminal Expansion of the Universe. Pub. Astron. Soc. Aust. 21, 97–109 (2004). See Fig. 1

    Google Scholar 

  24. Jaynes, E.T.: Macroscopic prediction in computer systems—operational approaches. In: Haken, H. (ed.) Neurobiology, Physics and Computers, pp. 254–269. Springer, Berlin (1985), Eq. 5

    Google Scholar 

  25. Evans, D.J., Searles, D.J.: Equilibrium microstates which generate second law violating steady states. Phys. Rev. E 50(2), 1645–1648 (1994)

    Article  Google Scholar 

  26. Shakura, N.I., Sunyaev, R.A.: Astron. Astrophys. 24, 337 (1973)

    Google Scholar 

  27. Pringle, J.E.: Accretion discs in astrophysics. Ann. Rev. Astron. Astrophys. 19, 137–162 (1981)

    Article  Google Scholar 

  28. Blandford, R.D., Payne, D.G.: Hydrodynamic flows from accretion discs and the production of radio jets. MNRAS 199, 883–903 (1982)

    MATH  Google Scholar 

  29. Taylor, E.R., Wheeler, J.A.: Exploring Black Holes: Introduction to General Relativity. Addision Wesley Longman, San Franciso (2000). (Chaps. 4 and 5)

    Google Scholar 

  30. Cabrit, S.: The accretion-ejection connexion in T Tauri stars: jets models vs. observations. In: Bouvier, J., Appenzeller, I. (eds.) Star-Disk Interaction in Young Stars, Proceedings of the IAU Symposium No. 243 (2007)

    Google Scholar 

  31. Balbus, S.A., Hawley, J.F.: A powerful local shear instability in weakly magnetized disks. I linear analysis. ApJ. 376, 214–222 (1991)

    Article  Google Scholar 

  32. Balbus, S.A., Hawley, J.F.: Instability, turbulence, and enhanced transport in accretion disks. Rev. Mod. Phys. 70(1), 1–53 (1998)

    Article  Google Scholar 

  33. http://en.wikipedia.org/wiki/Magnetorotational_instability

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles H. Lineweaver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lineweaver, C.H. (2014). The Entropy of the Universe and the Maximum Entropy Production Principle. In: Dewar, R., Lineweaver, C., Niven, R., Regenauer-Lieb, K. (eds) Beyond the Second Law. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40154-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40154-1_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40153-4

  • Online ISBN: 978-3-642-40154-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics