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ABSTRACT

Empirical analyses are shown to imply variation in the shape or analytical form of the raindrop size distribution
consistent with that observed experimentally and predicted theoretically. These natural variations in distribution
shape are demonstrated by deriving relationships between pairs of integral rainfall parameters using a three
parameter gamma drop size distribution and comparing the expressions with empirical results, These comparisons
produce values for the size distribution parameters which display a systematic dependence of one of the
parameters on another between different rainfall types, as well as from moment to moment within a given
rainfall type. The implications of this finding are explored in terms of the use of a three-parameter gamma
distribution in dual-measurement techniques to determine rainfall rate.

1. Introduction

The analysis of rainfall data has assumed tradition-
ally that the raindrop size distribution (DSD) has ex-
ponential form; that is, with MD) (m~ cm™') equal
to the number of raindrops per unit volume per unit
size interval having equivolume spherical diameter D
(cm), then

N(D) = Noexp(—AD) (0 <D <Dux), (1)

where Ny (m™ cm™') and A (cm™!) are parameters of
the distribution and D, is the maximum drop di-
ameter. This form was originally found by Marshall
and Palmer (1948) who also suggested that A varied
with rainfall rate R (mm h™') as A = 41R~%?' and that
N, had the constant value No = 8§ X 10° m™3cm™. A
similar analysis of the drop size spectra of Laws and
Parsons (1943) reveals that their data can also be
represented closely by exponential form but with
A = 38R™%%0 and N, weakly dependent on rainfall rate
through N, = 5.1 X 10°R7003,

There exist many other experimental results which
suggest that Eq. (1) is a very good approximation to
the raindrop size distribution in conditions similar to
those which apply to the Marshall and Palmer and
Laws and Parsons spectra, viz., where sufficient av-
eraging in space and/or time is performed. However,
Waldvogel (1974) and Donnadieu (1982) have shown
that large and sudden changes in N, can occur from
moment to moment within a given rainfall type. In
these situations it is therefore necessary to account for
deviations of N, from the constant value found by
Marshall and Palmer, or the weak dependence of N,
on R implied by the Laws and Parsons spectra. Fur-
thermore, these variations in N, are independent of
those that occur in A from moment to moment so
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that to describe rainfall parameters accurately it is nec-
essary to specify both of these two independent DSD
variables. The consequences of this conclusion have
been explored in depth in many previous investigations
(e.g., Atlas and Ulbrich, 1974; Goldhirsh and Katz,
1974; Hauser and Amayenc, 1983; Seliga and Bringi,
1976; Seliga et al, 1981; Ulbrich and Atlas, 1975,
1977, 1978, 1984; Ulbrich, 1981) particularly with re-
gard to its implications in remote measurement tech-
niques for determining rainfall rate. These investiga-
tions have shown that a significant improvement in
measurement accuracy is obtained when pairs of re-
mote measurables are used to determine the two DSD
parameters and thus all precipitation parameters de-
fined in terms of them. This improvement in accuracy
is a consequence of the fact that such dual-measure-
ment techniques allow for natural, independent vari-
ations in both of the DSD parameters and alleviate
the need for the introduction of empirical relations.

In some cases, variations of the DSD from expo-
nentiality [i.e., from the form given by Eq. (1)] can
have important effects on the values of rainfall param-
eters deduced from dual-measurement techniques (Ul-
brich and Atlas, 1977; Ulbrich, 1981). These effects
are particularly pronounced in the case of rainfall rates
deduced from differential reflectivity measurements.
For this technique Ulbrich and Atlas (1984) have
shown that further improvement in measurement ac-
curacy can be achieved if the DSD is assumed to be
a gamma distribution, i.e., of the form

N(D) = NoD* exp(—AD), (V)

where the eprnent  can have any positive or negative
value and the coefficient N, now has the units m™3
cm™!"*. Additional support for the DSD having this

0<D<Dpy,
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form in differential reflectivity measurements is found
in the experimental results of Goddard and Cherry
(1984) and Bringi et al. (1984).

Since Eq. (2) involves three DSD parameters, then
this form of the distribution can be used in dual-mea-
surement techniques only if & priori knowledge exists
concerning the behavior of one of the parameters or
of a relationship between two of them. Alternatively,
a third remote measurable could be introduced thereby
enabling simultaneous determination of all three DSD
parameters. Atlas et al. (1984) describe a simulation
of such a three-measurable technique using experi-
mental raindrop size spectra for which they obtain
virtually perfect agreement between calculated and ob-
served rainfall rates.

In this work further justification is presented for
employing a DSD having the form given by Eq. (2)
by demonstrating that previous empirical analyses of
other investigators imply that variations in the form
or shape of the DSD occur commonly in nature. It is
further shown that the DSD variations found between
different rainfall types are similar to those found from
moment to moment within a given rainfall type. Fi-
nally, methods are outlined which would permit these
variations to be incorporated into dual-measurement
methods thereby alleviating the necessity of introducing
a third remote measurable.

2. Theoretical relations: Gamma distribution

The gamma distribution has been suggested as an
appropriate form for the distribution of droplets in
clouds by Khrgian et al. (1952), of aerosols by Levin
(1961), and of precipitation particles by Sulakvelidze
(1969) and Sulakvelidze and Dadali (1971). Some of
the relations shown in this work are similar to those
presented in the latter reference.

a. Gamma drop size distribution parameters

When employing a form like Eq. (2) for the DSD
it is usually assumed that the product AD,, is large.
In such a case the median volume diameter D, (cm)
can be expressed uniquely in terms of A. For an ex-
ponential distribution (¢ = 0) Sekhon and Srivastava
(1970) have shown that ADy = 3.672 when AD,x —
oo and is within 2% of this limiting value for all AD,.,
= 10 (i.e., Dpar/Do = 2.5). For values of p different
from zero the relationship between A, Dy and Dy, is
determined from the definition of Dy, i.e.,

Do Dimax
2 f D*N(D)dD = D*N(D)dD, (3)
0 0
which can also be written
2v(4 + g, ADy) = v(4 + p, ADnmay), ®

where y(a, x) is the incomplete gamma function. A
plot of the relationship between AD, and AD,,,, {(or
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Dax/Dy) as defined by Eq. (4) is shown in Fig. 1 for
values of —2 < u < 3. It is seen that the value of AD,,,,
at which AD, is close to its limiting value depends on
u, but for p = —2 it may be concluded that AD, is
very close to its limiting value at all x4 provided D,/
Dy = 2.5. It can be further shown that these limiting
values are given by the approximate expression

ADy =3.67+u &)

which is accurate to within 0.5% for all u > —3. An
even better approximation is ADy, = 3.67 + pu
+ 10793+ which gives limiting values of AD, which
are within 0.02% of their exact values at all u > 3.
In the remainder of this work it is assumed that AD,
is given by Eq. (5) and that the upper limits on all
integral parameters can be allowed to tend to infinitely
large values.

The shape of the DSD as a function of D is deter-
mined solely by the exponent u. That is, for positive

values of p the DSD is concave down on a plot of

In[N(D)] versus D, has narrow breadth and falls rapidly
to zero as D — 0. For negative values of u the DSD
is concave upward on a semilogarithmic plot and has
large breadth with increased numbers of drops at both
small and large diameters. These DSD shapes are il-
lustrated in Fig. 2 for three distributions all having the
same liquid water content and median volume di-
ameter but with differing values of u. It is apparent
that the form given by Eq. (2) allows for a wide variety
of DSD shapes and breadths. That such a variety of
forms occurs in nature will be demonstrated in Sec-
tion 3.

One of the advantages of assuming an exponential
form for the DSD is that both of the DSD parameters
can be determined graphically on a plot of In[MD)]
versus D. Although not all three of the parameters in
Eq. (2) can be determined on a single plot, two of
them can be interpreted graphically in a manner similar
to that for the exponential distribution. On a plot of
In[N(D)] versus D the portion of the gamma distri-

F1G. 1. The product AD, as a function of AD,,, and D, /D, for
a gamma raindrop size distribution having the form N(D) = N,D*
X exp(—AD)0 < D < D). Each of the curves is labeled with the
value of the exponent g to which it corresponds.
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FiG. 2. Examples of the gamma raindrop size distribution for
g = —2, 0 and 2 and with liquid water content W = 1 g m™> and
median volume diameter D, = 2 mm. The inset table shows the
corresponding values of radar reflectivity factor (Rayleigh approxi-
mation) and rainfall rate.

bution at diameters large compared to D, is linear and
has slope equal in magnitude to A. A second plot of
In[N(D)] versus In(D) approaches linearity at diameters
small compared to D, with slope equal to u. These
two plots could therefore, in principle, be used to derive
estimates of A and p which together define the rep-
resentative diameter D, and the shape of the DSD.
However, in practice such a procedure would of course
not be used. A simpler procedure will be described
later which uses the experimental size spectrum data
and produces fits of the gamma DSD which are better
than those obtained by graphical means or by least
squares.

b. Integral rainfall parameters

For the purposes of the present work it will be as-
sumed that all of the integral rainfall parameters of
interest can be represented by the form

P=ap f DPN(D)dD 6)
0
which, when Eqgs. (2) and (5) are used, takes the form
+u+1
P=a P(L.”'__)_ NODg"'“*“, )

P (3.67 + pyrtet!
where I'(x) = ¥(x, o) is the complete gamma function.
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Table 1 lists the values of the coefficient ap and
exponent p corresponding to the integral parameters
radar reflectivity factor (Rayleigh approximation) Z
(mm® m™3), rainfall rate R (mm h™'), liquid water
content W (g m™3), microwave attenuation A (dB
km™"), and optical extinction Z (km™'). In construction
of this table it has been assumed that power law ap-
proximations to the particle fallspeed v(D) and
microwave total attenuation cross section QD) are
valid. Therefore, the former has the form v(D)
= 17.67D"¢[v(D) (m s™), D (cm)] as suggested by
Atlas and Ulbrich (1977) and the latter is of the form
QD) = C,D"[Q4D) (cm?), D (cm)]. Of course, C,
and #n are functions of wavelength and their values can
be found in Atlas and Ulbrich (1974).

To illustrate the effects of variations in x4 on these
integral rainfall parameters, the fractional contribution
in size categories of width A(D/Dg) = 0.5 has been
computed as a function of u for p = 2, 3, 4 and 6.
The first two of these examples correspond to P = 2
and W (optical extinction and liquid water content),
respectively. The fourth corresponds to P = Z (reflec-
tivity factor). The third is an approximation to P = 4
(microwave attenuation) in the X-band. The results
are shown in Fig. 3(a)~(d) for p = 2, 3, 4 and 6, re-
spectively. The dashed and solid histograms correspond
to u = —2 and 2, respectively. These results show that
for p < 6 the fractional contribution to integral pa-
rameters for g = —2 is greater in both the small and
large size categories than for u = 2. Clearly then, these
integral parameter distributions are increased in
breadth at both ends of the diameter scale. However,
for p = 6 the increase is accomplished primarily at the
large diameters.

One of the assumptions implicit in Eq. (6) is that
the lower and upper limits of integration can be chosen
as D, = 0 and D,,,, — o0, respectively. Sekhon and
Srivastava (1970) have investigated the accuracy of
assuming D, — oo for integral parameters defined
in terms of an exponential distribution. They find that
the error introduced by allowing Dy, to be finite is
negligible for all p < 6 provided D.../Dp = 3.2. In-
spection of Fig. 3 shows that this same conclusion

TABLE 1. Coefficients g and exponents p in expressions of the
form

© Tp+pu+l
P=apL D° N(D)dD = ap @t ptl)

e ut+l
(3.67 + pyt+*! NoD§*

for integral rainfall parameters P which use the gamma raindrop
size distribution for N(D).

P p ap

z 6 10° mm® cm™

w 3 0.524 g cm™

b 2 0.157 km™! m? cm™

R 3.67 33.31 mm h™' m*® cm™3¢’

A n 0.4343C, dB km™' m’ cm™
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FIG. 3. Fractional contribution to integral rainfall parameters having
p = 2,3, 4 and 6 (a)-(d), respectively in size categories of width
A(D/Dy) = 0.5 for gamma drop size distributions with u = -2
and 2.

applies to the present work except for the case where
u = —2, p = 6. For this case it is evident that one
must require D,,/Dy > 5 for the error to be small.
However, it will be seen presently that y < 0 usually
corresponds to the specific case of orographically in-
duced rainfall with small D;. Consequently, the as-
sumption of large D,../D, will not be restrictive in
most meteorological situations. Ulbrich and Atlas
(1984) have shown that similar conclusions can be
drawn for the differential reflectivity.

The effect of taking the lower limit of integration
to be zero can also be deduced from Fig. 3. It is clear
that if Dy, > 0 then the error introduced by assuming
D, = 0 will be most pronounced at small p and
u < 0. However, as before, this case usually corresponds
to rainfall composed of large numbers of very small
drops so that the assumption that D,;, = 0 should be
a good approximation. In the remainder of this work
it will be assumed that D;,/D, is small and Dy, /Do
is large so that all integral parameters can be repre-
sented by Eq. (7). More quantitative information con-
cerning other assumptions for the limits of integration
can be obtained from mathematical tables of the in-
complete gamma function.

c¢. Distribution shape parameters

Several parameters have been introduced by previous
workers which serve as measures of the breadth or
shape of the DSD and which can be expressed in terms
of the exponent u. One of them is the factor G intro-
duced by Bartnoff and Atlas (1951) which is a di-
mensionless third moment of the mass spectrum, i.e.,
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f “ DSN(D)dD
Yo LT + u)

~ (AD)’T(4 + p)

meme
0

_6+us+mwié+w
(3.67 + )’ ’

where T'(x) = v(x, o) is the complete gamma function.
Another similar breadth parameter, defined in terms
of the mass-weighted average diameter D,, rather than
Do, is

®)

fw D°N(D)dD
oo __T0+w
© 3
4]
_ 6+ u)5+p
T ©
where
‘Lw D*N(D)YdD 4t
= = ”=( ”)ayam
0

The advantages of using D,, rather than D; have been
described by Weber (1976). The use of D,, in analyses
of precipitation data is more convenient computa-
tionally and avoids interpolation of particle size spectra
to find Dy. In any event, D,, is a very good approxi-
mation to D, for all u = —2 as is evident in the plot
of D,,/D, versus p in Fig. 4; also shown are the de-
pendences on u of G, G', and ¢2/D§, where o2, is the
variance of the mass spectrum with respect to D,, and
is given by

f ) (D — D,.’D’N(D)dD
0

+u
fDme
0
4+ pu »
=——F p2 11
B67T+puP ° (1)

It is clear that for ¢ < 3, G, G’ and ¢2%/D} are equally
sensitive measures of DSD breadth with large values

- corresponding to negative u. For u > 3 these parameters

are less sensitive to changes in u; in this range of values
of x the DSD has such narrow breadth that further
increases in p have a less pronounced effect on integral
rainfall parameters. Nevertheless, these measures of
DSD shape or breadth are more sensitive than other
more commonly used parameters such as the variance
of the number distribution with respect to the number-
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FIG. 4. Two dimensionless third moments of the mass distribution
G and G', the dimensionless variance of the mass distribution
02%/D} and the ratio of the mass-weighted average diameter to the
median volume diameter D,./D,, as functions of the exponent u in
the gamma raindrop size distribution. Each curve was constructed
using the assumption that the product ADy,,, — 0.

weighted average diameter. It can be shown that this
parameter is much more slowly varying with x than
o2, because it places greater weight on the portion of
the spectrum containing small diameter drops, whereas
o2, places greater weight on the central portion of the
spectrum.

Joss and Gori (1978) define DSD shape parameters
in terms of integral parameters P and Q as

'D(P) - D(Q)
SPO) = D(P) + D(Q)| spservea .
PO = 55 Do) . a2
D(P ) + D (Q) exponential
where
f DPN(D)YdD
D(P) = — (13)

f ) D 'N(D)dD
0

A similar definition follows from Eq. (13) for D(Q) in
terms of a corresponding exponent g. Joss and Gori
calculate these shape factors for observed drop size
spectra with P and Q chosen from Z, W and 2 (as
defined in Table 1) and an additional integral param-
eter designated R* and defined by Eq. (6) with p = 4,
The pairs chosen are (P, Q) = (Z, 2), (Z, R*), (R*,
W) and (W, 2) corresponding to (p, q) = (6, 2), (6,
4), (4, 3) and (3, 2), respectively. If it is assumed that
the observed DSD can be represented by a gamma
distribution so that Eq. (3) can be used for MD) in
Eq. (12) and (13), then these shape factors can be
shown to have the form
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ptq
p+rqg+2u’

It is seen that the S(PQ) are given solely in terms of
the exponent u and that values of S(PQ) < 1 correspond
to concave downward distributions in agreement with
the observations of Joss and Gori. Values of S(PQ)
> 1 correspond to concave upward distributions and
such behavior is evident in a few instances in the work
of Gori and Geotis (1981). It can be shown that the
behavior as a function of i of each of the S(PQ) used
by Joss and Gori (1978) is very similar to that shown
in Fig. 4 for G, G', and ¢2,/D§ when the latter param-
eters are normalized to their values for u = 0. In fact,
there is little difference between all of the S(PQ) for u
> 0. For u < 0, S(R*W) and S(ZR*) are very similar
to the normalized G' and G, respectively. It may be
concluded then that the S(PQ) introduced by Joss and
Gori and the shape parameters defined earlier by other
workers and displayed in Fig. 4 serve equally well in
characterizing the shape of the DSD when it is assumed
that it can be represented by a gamma distribution.

S(PQ) = (14)

3. Evidence for DSD shape effects
a. Experimental

There exist many experimental investigations which
support the need for the DSD having shape similar to
that described in this work. Among these are the work
of Joss and Gori (1978) and Gori and Geotis (1981)
which have already been referred to in the previous
section. Others which are especially important in the
present context are the experimental measurements of
Mueller (1965), Caton (1966), Blanchard (1953) and
Dingle and Hardy (1962).

The drop size spectra of Mueller were collected with
a drop camera having a sampling volume of about 1
m? and correspond to a variety of rainfall types in-
cluding continuous rain, showers and thunderstorm
rain, but not including orographic rain. Every one of
Mueller’s drop size spectra is concave downward in-
dicating that they are described by a DSD having
u> 0.

The experimental results of Caton were obtained
from Doppler radar measurements at different heights
above the surface in continuous rainfall. Although the
sampling volume is much larger in this case (which
would imply a greater degree of spatial averaging than
is the case in Mueller’s measurements), almost all of
Caton’s drop spectra are similar to Mueller’s in that
they can also be described by a gamma distribution
with positive u. In addition, there is clear evidence in
Caton’s work that the shape of the DSD is dependent
on altitude.

Some of the measurements of Blanchard (1953) were
obtained in orographically induced rainfall and involve
sampling volumes somewhat smaller than those of Ca-
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ton and Mueller. Nevertheless, Blanchard’s results in-
dicate a clear tendency for increased numbers of small
diameter drops in this type of rainfall which suggests
that they could be described by a gamma DSD with
u<0.

Finally, the results of Dingle and Hardy (1962) are
important since they offer insight into some of the
physical mechanisms giving rise to changes in DSD
shape. Their measurements, taken with a photoelectric
spectrometer, show concave upward behavior for the
DSD at the leading edges of showers and concave
downward behavior in the rainshafts of thunderstorms.
(They refer to the former behavior as a deficit and the
latter as an excess of medium size drops relative to an
exponential distribution). Dingle and Hardy attribute
the concave upward behavior to the size sorting effects
of gravity and wind shear at the leading edge of a
shower. The concave downward behavior they con-
clude is due to the combined effects of breakup of
large drops induced by gustiness and turbulence and
the evaporation of small drops in the dry air beneath
a thunderstorm.

b. Theoretical

In addition to the experimental evidence given here
there exists an abundance of theoretical work which
displays DSD shape effects similar to that considered
in this work, Some of these investigations include those
due to Hardy (1963), Mason and Ramanadham (1954),
Ogura and Takahashi (1973), Brazier-Smith et al.
(1972), List and Gillespie (1976) and Borchers et al.
(1981). The first three of these assume that the mod-
ification of the DSD occurs at least partly within a
supersaturated environment of cloud droplets, whereas
the last three consider the drops to fall in unsaturated
air. Each of these investigations involves some or all
of the following physical mechanisms: condensation,
accretion of cloud droplets, evaporation, collision-co-
alescence, collisional breakup and aerodynamic
breakup. Obviously the first two mechanisms would
not be included in a theoretical model of an unsaturated
environment. In such a case the third and fourth
mechanisms would tend to reduce the numbers of small
drops, whereas the last two would affect a reduction
in the numbers of large drops relative to some ini-
tial DSD.

As a specific example of the latter process, if it is
assumed that the DSD is exponential initially at cloud
base and that the drops fall in unsaturated air, then
the effect of the above mechanisms would be to trans-
form the DSD to concave downward shape as shown
in Fig. 5a. Such a modification of the DSD is very
clear in the work of Borchers et al. (1981) which is
the most realistic of these theoretical calculations for
unsaturated air since it includes all of the above physical
mechanisms. In addition, the changes in DSD shape
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FIG. 5. (a) Changes in the raindrop size distribution as a result of
evaporation, collision-coalescence, collisional breakup and aero-
dynamic breakup of raindrops in an unsaturated environment. The
modification is assumed to occur at constant liquid water content
so that the DSD parameters u, Ny and D, and the total number
concentration of drops N change as shown on the figure. (b) Changes
in the drop size distribution which would occur at constant liquid
water content if it is assumed that the distribution must remain
exponential. Other details as in (a).

with distance below cloud base as predicted by this
theoretical work are in accord with the observations
of Caton (1966) described earlier.

These changes in the DSD can be expressed quan-
titatively if it is assumed that they take place at constant
liquid water content W, Since Borchers et al. (1981)
show that the loss of liquid water due to evaporation
is important only for the smallest drops which con-
tribute only a small amount to the total liquid water
content, then this assumption will be sufficiently ac-
curate for the present purposes. The total number con-
centration of drops Nt (m~3) given by

I'( + p)
(3.67 + p)'** NoDb™

when Egs. (3) and (5) are used, can then be expressed
in terms of W by eliminating D, between Eq. (15) and
Eq. (6) with P= W, p = 3 and ap = 0.524 g cm™3, as
indicated in Table 1. The result so obtained is

T'(1 + p) 6\ T+
e ] ) B

In similar fashion the median volume diameter can
be written in terms of W as
1/(4+y)
] . {a7n

These equations imply that a reduction in Ny at con-
stant W due to breakup and coalescence requires an
increase in N, and a decrease in D, concomitant with
an increase in u. That is, if the DSD were initially
exponential with DSD parameters having initial values
B = 0, No = No,', D() = DOia and NT = NT,' theﬂ, after

Np= fo i MD)dD = (15)

Np= Na/(4+n)

®

6w

Dy = (3.67 + u)[_—wNoFM )
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modification such that Ny < Np; and g > 0, one finds
Ny > Ny;and Dy < Dy, as shown in Fig. 5a. The changes
in DSD shape predicted by theory could not have been
made consistent with these results if it were assumed
that the DSD must remain exponential (x = 0). In
such a case a decrease in Nr at constant W would
require that Ny < Ny; and Dy > Dy; so that the DSD
is transformed to a form like that shown in Fig. 5b.
Finally, it should be noted that the same kinds of
changes in DSD shape are predicted in the first three
of the above cited theoretical investigations where at
least part of the trajectory of the drops is through a
supersaturated cloud environment. Consequently, the
description of the DSD in terms of a gamma distri-
bution would be useful even in those cases where the
total rainfall water content is not conserved.

In summary then, there is a wealth of experimental
and theoretical work which demonstrates that the use
of a two parameter exponential distribution is inad-
equate for describing the changes in the DSD which
occur naturally in the atmosphere. The experimental
evidence is based on thousands of observations from
a wide variety of geographical locations and involves
many different types of measuring instruments ac-
quiring data aloft as well as at the surface of the earth.
This large volume of data ensures that the DSD shape
effects observed experimentally cannot be the result
of measurement errors. Furthermore, the raindrop in-
teractions inherent in theoretical models of DSD evo-
lution provide additional support for concluding that
DSD shape effects are real and are the result of the
action of known physical mechanisms.

4. Applications of the gamma drop size distribution
a. Empirical relations between integral parameters

The theoretical expressions developed earlier in this
work are used in this section to deduce relationships
between pairs of integral parameters. The results so
obtained are compared with empirically derived re-
lations of other investigations to determine the vari-
ations in Ny and u which occur in nature.

Let the first of the pair of integral parameters be
designated P and written as in Eq. (7). If the second
is designated Q then

0=a Tg+u+1)
2 (3.67 + )t

FElimination of D, between Egs. (7) and (18) results in
the form

g+u+l. . (18)

P = aQ? (19)
with
ptu+l ,
=— 20
b= (20)
1-8
— apI‘(p+;L+ I)NO (21)

[aol(q + 1 + DI
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These equations can be inverted easily to find x and
Ny in terms of « and 8. The results obtained are

_p—Ba_
8—1

oLear(i=1)]

No = B8(p — q)
a"r( Bp— 1q)

For an empirical relation involving a given pair of
integral parameters P and Q, substitution into Eq. (22)-
(23) of the values of @ and 8 found from empirical
analyses of rainfall data for P and Q yields the values
of u and N, which this empirical relation implies. Using
the five integral parameters Z, R, W, A4, and Z in Eq.
(19) it is possible to derive a total of 10 independent
relations between pairs of them. There exist in the
meteorological literature empirical relations corre-
sponding to virtually all of these possibilities. The most
popular is of course the relation between Z and R for
which P=Z,p =6, ap = 10° mm® cm™® and Q = R,
q=3.67,ap = 33.31 mm h™' m?® cm™>¢7 as shown in
Table 1. For this case Eq. (19) gives 8 = (7 + u)/(4.67
+ u) which implies that the use of an exponential
distribution (g = 0) in this procedure predicts § = 7/
4.67 = 1.5, the only value of 8 permitted by the as-
sumption of such a form for the DSD. However, it is
clear from the 69 Z-R relations listed by Battan (1973)
that there is considerable variation in 8 and in « be-
tween empirical Z-R’ relations for different rainfall
types as well as between different Z-R relations for
the same rainfall type. Ulbrich and Atlas (1978) show
that these variations in « and 8 are due to real physical
differences between the types of rainfall to which the
Z-R relations apply. In addition, Wilson and Brandes
(1979) consider each of the physical mechanisms enu-
merated in the previous section and show how the
values of & and 8 would be affected by the action of
each mechanism. The observed variations in « and 8
are therefore not due to measurement errors nor are
they induced by correlations between the errors in-
volved in measuring Z and R. The latter conclusion
is especially appropriate in those cases where the mea-
surements of the two integral parameters are made by
different instruments. Such is the case in the work of
Seliga et al. (1981), Desautels and Gunn (1970) and
Wilson and Brandes (1979) which demonstrate con-
siderable variation in « and 8 in both space and time.

The values of u and N, implied by the 69 Z-R
relations of Battan (1973) have been calculated fol-
lowing the procedure given above and the numerical
results for some of them are shown in Table 2. Only
those Z-R relations for which it is possible to clearly
identify the type of rainfall to which the empirical

1, (22) .

1/(1-8)

(23)
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TABLE 2. Values of « and 8 in Z = aR? found from empirical analyses of rainfall data, the values of the parameters u and N in the
gamma DSD implied by these relations, and the corresponding values of ¢ and 4 in the implied Do-R relation of the form Dy = eR®,

Source a 8 ° Ny € )
Orographic rain:
Wexler (1948) 208 1.53 -0.27 427 X 10* 0.080 0.23
Ramana Murty and Gupta (1959) 109 1.64 -1.03 9.82 X 10° 0.055 0.28
Blanchard (1953) 31 1.71 -1.39 1.59 X 10 0.031 0.31
Thunderstorm rain:
Jones (1956) 486 1.37 1.63 2.05 X 10¢ 0.130 0.16
Blanchard (1953) 290 1.41 1.01 1.24 X 10¢ 0.101 0.18
Savaramakrishnan (1961) 219 1.41 1.01 2.46 X 10° 0.090 0.18
Fujiwara (1965) 450 1.46 0.40 7.05 x 10* 0.118 0.20
Widespread or stratiform rain:
Jones (1956) 313 1.25 4.65 6.40 X 10'° 0.114 0.11
Atlas and Chmela (1957) 255 1.41 1.01 7.53 X 10° 0.110 0.18
Fujiwara (1965) 205 1.48 0.18 1.96 X 10° 0.082 0.21
Marshall and Palmer (1948) 220 1.60 -0.79 7.24 X 10° 0.077 0.26
Showers:
Jones (1956) 380 1.24 5.04 9.20 X 10'° 0.129 0.10
Fujiwara (1965) 300 1.37 1.63 7.54 X 10° 0.106 0.16
Imai (1960) 200 1.50 —-0.01 1.09 X 10° 0.081 0.22
Muchnik (1961) 204 1.70 —1.34 1.31 X 10° 0.069 0.30
Foote (1966) 520 1.81 -1.79 9.13 X 10! 0.095 0.35
Higgs (1952) 127 2.87 -3.42 1.29 0.013 0.80

relation applies have been included in this table. In
addition, none has been included for which the analysis
leading to the equation implies either a specific form
for the DSD or a relationship between any of the DSD
parameters. By categorizing these relations in this way
it is seen that u < 0 for orographic rain (indicating a
broad DSD with large numbers of small diameter
drops) and 0 < u < 2 for thunderstorm rain (corre-
sponding to a narrower DSD with reduced numbers
of small drops). For widespread or stratiform rain the
values of p are more variable but tend to be positive.
For showers p is even more variable and no general
statement may be made about its range of values.

b. Empirical Dy-R relations

Further evidence of DSD shape effects can be found
in the many extant empirically determined relations
between D, and R. A theoretical relation of this type
can be deduced from Eq. (7) for the rainfall rate R
(i.e., P = R with ap and p as given in Table 1). Solving
the resultant equation for D, we get an expression of
the form

Dy = €R®, (24)
where
e = (3.67 + w[33.31N,T(4.67 + w)]~/467+, (25)
1
0 =—.,
467 + pn (26)

The results for ¢ and § found by substituting into Eqs.
(25) and (26) the values of Ny and u implied by the
above Z-R relations are listed in Table 2. The variation

of e and & with rainfall type is exactly as described by
Atlas (1964) and by Atlas and Chmela (1957). That
is, low ¢ and high & are characteristic of orographic
rain with small D, and falispeed, whereas higher ¢ and
lower 6 are representative of thunderstorm rain with
larger drops. In addition, the ranges of values of e and
4 shown in Table 2 are similar to those given by Battan
(1973). If the unusual results of Higgs (1952) are not
included, these ranges are more than a factor of 4 for
¢ and a factor of 3 for é. If the results of Higgs (1952)
are included, these ranges are even larger. These vari-
ations could not be accounted for through the use of
an exponential distribution.

¢. Ny-pu relations

One of the interesting aspects of the results listed
in Table 2 is the systematic tendency for N, to increase
as u increases. This is more clearly illustrated in Fig.
6 where log,o Ny is plotted versus g as open circles for
all of the 69 Z-R relations listed by Battan (1973).
Although more than 85% of the data points lie in the
range —2 < u < 3, these results show that there is a
well-defined exponential dependence of Ny on u im-
plied by these empirical relations over a wide range
of values of u. The same analysis as that described
above for the Z-R relations has been performed for
several other empirical relations between the pairs of
integral parameters Z-W, W-A, Z-R, W-R, Z-W and
A-R. The results found from these relations are plotted
in Fig. 6. They suggest the same relationship between
Ny and p as implied by the Z—-R relations. Since some
of these empirical relations are not dependent on the
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FiG. 6. Plot of the gamma DSD parameters N, versus u as deduced
from empirical relations between rainfall integral parameters. The
solid circles are points found from the 69 empirical Z-R relations
listed by Battan (1973). The squares correspond to the empirical Z-
W relations of Marshall and Palmer (1948), Sivaramakrishnan (1961),
Jones (1956) and Ulbrich and Atlas (1977). The triangle is a point
found from the empirical W-A relation of Eccles and Mueller (1971).
The diamonds are found from the empirical Z-R relations of Atlas
(1953) and Ulbrich and Atlas (1977). The crosses represent the em-
pirical W-R relations of Marshall and Palmer (1948) and Sivara-
makrishnan (1961). The asterisk corresponds to the =-W relation
of Ulbrich and Atlas (1977) and the plus sign is found from the 4-
R relation of Atlas and Ulbrich (1977) for a radar wavelength of
3.22 cm and a temperature of 10°C. The straight line and the equation
shown on the figure represent a least squares fit to all the data.

drop fallspeed, the similarity of the results suggests that
the Ny—u relationship is not strongly dependent on the
assumption of a power law dependence of drop fall-
speed on diameter.

A linear least squares fit of InN, versus u to all the
data in Fig. 6 produces an expression of the form

Ny = 6 X 10* exp(3.2p) [m 3 cm™™*]  (27)

with the linear correlation coefficient between InN,
and p for these data greater than 0.98. This very high
correlation is not surprising in view of the dependence
of N, on u implied theoretically by Eq. (23). This de-
pendence is shown in Fig. 7 where log;o Ny is plotted
versus y with P = Z, 0 = R, and with « as a parameter
having values equal to 100, 200, 300 and 500 mmS5—*
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m™3 AP, Since more than 75% of the empirical values
of « fall in the range 150 < a < 450 mm®# m™ Af
and the Ny—u relation is fairly insensitive to changes
in a within this range, then it is seen that Eq. (27) has
both theoretical and empirical justification.

A similar relationship between Ny and p is also in-
herent in raindrop spectra from moment to moment
within a given rainfall type. To demonstrate that such
is the case, a set of experimental drop size spectra has
been used to find the DSD parameters. A description
of these data and the details concerning the method
of collection can be found in Ulbrich and Atlas (1977).
The method by which Ny, p and A were found for.
these data first uses Eq. (9) to find ux from the value
of G’ calculated from the size spectrum. This result is
then used with the experimental value of D,, to find
A (or Dp) from Eq. (10). These two parameters are
then used to find N, from Eq. (6) with P = W, the
liquid water content. The fits of Eq. (2) to the exper-
imental data which result from this procedure are better
than those found by least squares in the sense that
they predict values of integral parameters such as R
and Z which are closer to those found directly from
the experimental data. This finding is probably due to
the fact that this procedure uses three integral param-
eters (G, D,,, W) to find the DSD parameters (N,
Dy, p) which are in turn used to find the values of

FG. 7. Theoretical dependence of Ny on u with « as a parameter
as implied by empirical Z-R relations of the form Z = aR®, Each
curve is labeled with the value of o to which it corresponds. Also
shown as a dashed line is the least squares No-u line from Fig. 6.
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other integral parameters. This result was also noted
in the work of Ulbrich and Atlas (1977) and is a con-
sequence of the greater weighting of the large drops
implicit in the calculation of the DSD parameters from
G', D,,, and W as compared with that embodied in a
traditional semilogarithmic least squares fit.

The values of Ny and u found by the above procedure
for the set of experimental drop size spectra used in
this work are plotted in Fig. 8 where it is seen that the
experimental spectra display the same kind of tendency
for N, to increase as u increases as found from the
empirical Z-R relations. However, the Ny—u relation
shown in Fig. 6 and plotted in Fig. 8 as the solid
straight line is seen to generally overestimate the results
found from the experimental spectra. To display this
in quantitative terms a linear least squares fit of InN,
versus u to the data in Fig. 8 yields the result

Np = 1.52 X 10* exp(3.14x) [(m3 cm™'™*] (28)

with a correlation coefficient greater than 0.95. This
relation is plotted in Fig. 8 as the dashed straight line.
Although the constant in the argument of the expo-
nential function in Eq. (28) is close to that in Eq. (27),
the coeflicient is about a factor of four less. The origin
of this difference is not known at present, but will be
investigated in future work. The difference may be due

]

FIG. 8. Plot of the gamma DSD parameters N, versus u as deduced
from experimental drop size spectra from moment to moment within
a given rainfall type. The dashed line is a least squares fit to all the
data. The solid straight line is the least squares Ny~u line from Fig.
6. Also shown as (Z, R) and as a solid circle is the point deduced
from the empirical Z-R relation which applies to these data.
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to the fact that most of the empirical relations used
to find the data plotted in Fig. 6 involve a greater
degree of spatial averaging than the data shown in Fig.
8. An alternative explanation might be that the results
in Fig. 6 were derived from a pair of integral parameters
(Z and R) which weight the large diameter end of the
size spectrum more heavily than the parameters (G',
D,,, W) used to find the results in Fig. 8. To sub-
stantiate this latter point use can be made of the em-
pirical Z-R analysis performed by Ulbrich and Atlas
(1977) who find Z = 366R!“*? for the size spectrum
data used in this work. When this relation is used to
find N, and p by the procedure described earlier, it
produces a datum on the Ny—u diagram in Fig. 8 shown
by the solid circle. Although this point lies in the center
of the range of u’s within which the overwhelming
majority of the points in Fig. 6 lie, it does not fall in
the center of the data in Fig. 8 (where 75% of the data
fall in the range —1 < p < 4). Further work will be
required using spectral data for other rainfall events
to determine whether the difference between these two
No—pu relations is generally valid.

The equations deduced in the previous section re-
lating the total number concentration Ny and the me-
dian volume diameter D, to the liquid water content
W may be used to illustrate the physical significance
of the Ny—u relation found in this work. If Eq. (27) is
used in place of N, in Egs. (16) and (17) for Ny and
Dy, respectively, and it is assumed that W is constant,
then it is easy to show from these equations that the
effect of increasing u is to decrease N and D, when
W > 0.1 g m™ whereas when W < 0.1 g m™3, Np
decreases and D, increases when u increases. If this
relationship between N; and g did not exist and these
two parameters were allowed to vary independently,
then it would be possible to find combinations of them
for which an increase in u would produce an increase
in Ny, Consequently, use of the Ny—u relation found
in this work ensures that the changes in DSD shape
produced by increasing p will be accompanied by
changes in N7 consistent with that which has been
shown in the previous section to be predicted theo-
retically.

5. Implications in terms of dual-measurement tech-
niques

The existence of an Ny—u relation of the form found
in the previous section has implications in rainfall
measurement techniques which use pairs of remote
measurables. One of the first of these proposed tech-
niques involves the pair of remote measurables re-
flectivity factor Z and microwave attenuation A. This
specific example can be used as an illustration of how
the results found in this work are incorporated into
dual-measurement methods. The expressions for Z and
A found from Eq. (6) and Table 1 can be combined
by elimination of Dy to yield
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10(7 +
Z= 0+ B loged,  (9)
where
| 105T(7 + N6
&w) =10 IOgIO[[O- 434C, T + “)](7+,‘)/(5+“)] (30)

and the units of Z and 4 are dBZ and dB km™’, re-
spectively. For simplicity it has been assumed in this
example that # = 4 in Table 1 for the definition of A4,
which according to Atlas and Ulbrich (1974) would
apply to an attenuating radar wavelength A =~ 1.5 cm
and requires C, = 14.6 cm™.

If Eq. (27) is used in Eq. (30) for Ny, then &(u) is a
function of u only. Consequently, for given Z and 4
Eq. (27) represents an equation for u, the solution to
which is then combined with the theoretical expression
for either Z or A found from Eq. (6) to find D,. All
other integral rainfall parameters follow directly from
this solution.

Ulbrich (1981) has shown that rainfall parameters
deduced from this particular combination of remote
measurables are not very sensitive to DSD effects. A
dual-measurement method in' which DSD variations
are more important is that illustrated by Ulbrich and
“Atlas (1977) and which involves Z and 2. The incor-
poration of the Ny-u relation found in this work into
this method follows exactly the same approach as that
given above for Z and 4. However, for various reasons
both of these methods have profound problems as-
sociated with actual implementation in the field. The
most successful field-implemented technique to date
is the differential reflectivity (Zpg) technique of Seliga
and Bringi (1976) which Ulbrich and Atlas (1983) have
shown is also the most sensitive of the methods to the
DSD effects considered in this work. In fact they find
that the use of an exponential distribution in the Zpg
method systematically overestimates the rainfall rate
by almost 30%. However, Ulbrich (1983) has shown
that the theoretical calculation of Zpg which uses the
gamma DSD can be combined with the corresponding
calculation of the reflectivity factor at horizontal po-
larization (Zj) with the factor N, which occurs in Z
expressed in terms of u. The resultant Zpr—Zy rela-
tionship is a function of u only (when the variation
of raindrop axial ratio with equivalent spherical.di-
ameter is assumed to be known). This relationship can
therefore be used with experimentally determined val-
ues of Zpr and Zj to find p for that observation. The
result so obtained can be combined with Zpz and Zy
to find N, and D, from which all integral parameters
of interest follow directly provided that the limits of
integration can be specified [as in Eq. (6)]. Ulbrich
(1983) finds that the difference between the rainfall
rate deduced by this method and the actual rainfall
rate is small and only a few percent larger than that
which results when three remote measurables are em-
ployed.
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6. Conclusions

It may be concluded from this work that the use of
a three-parameter raindrop size distribution in analyses
of rainfall data describes very well the variation in
distribution shape which is observed experimentally
in nature and predicted theoretically. Although a
gamma distribution of the form N(D) = N,D*
exp(—AD) has been used here for the raindrop size
distribution in arriving at the conclusion, it is not the
only possible form and others may serve equally well
in describing these natural variations in DSD shape.
However, the gamma distribution is especially con-
venient since it produces simple expressions for integral
rainfall parameters and is a generalization of the ex-
ponential form found by Marshall and Palmer (1948).

It has also been found theoretically and empirically
that the parameters Ny and u are related through an
approximate expression of the form Ny = Cyexp(3.2u)
where Cy is a constant. This form appears to apply to .
the systematic variations of N, with x within a given
rainfall type as well as between different rainfall types.
However, the coefficient Cy has the value 6 X 10* m™3
cm™'™* when found from empirical relations between
integral parameters for different rainfall types and the
value 1.5 X 10* m~2 cm™'~* when found from analysis
of raindrop size spectra from moment to moment
within a given rainfall. More work needs to be done
with additional rainfall data to establish whether the
difference between these two results for Cy is generally
vahid.

The existence of a relationship between N, and u
implies that not all three of the gamma size distribution
parameters are independent. Equivalently, it may be
stated that the size distribution can be reduced to and
is adequately represented by a two parameter form
but that this form is not exponential. This means that
dual-measurement techniques can employ the gamma
distribution to obtain estimates of rainfall parameters
if the parameter N, is expressed in terms of u or vice
versa. Examples of this approach to dual-measurement
techniques have been considered in this work.

Finally, the results of this work have implications
concerning the structure of the rain parameter diagram
of Ulbrich and Atlas (1978). In future work an inves-
tigation will be made of the effects of assuming a
gamma drop size distribution on this graphical depic-
tion of the relationships between rainfall parameters.
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