
ALMOST ALL ORBITS OF THE COLLATZ MAP ATTAIN ALMOST
BOUNDED VALUES

TERENCE TAO

Abstract. Define the Collatz map Col : N + 1 → N + 1 on the positive integers
N+ 1 = {1, 2, 3, . . . } by setting Col(N) equal to 3N + 1 when N is odd and N/2 when
N is even, and let Colmin(N) := infn∈N Coln(N) denote the minimal element of the
Collatz orbit N,Col(N),Col2(N), . . . . The infamous Collatz conjecture asserts that
Colmin(N) = 1 for all N ∈ N + 1. Previously, it was shown by Korec that for any

θ > log 3
log 4 ≈ 0.7924, one has Colmin(N) ≤ Nθ for almost all N ∈ N + 1 (in the sense

of natural density). In this paper we show that for any function f : N + 1 → R with
limN→∞ f(N) = +∞, one has Colmin(N) ≤ f(N) for almost all N ∈ N+1 (in the sense
of logarithmic density). Our proof proceeds by establishing a stabilisation property for
a certain first passage random variable associated with the Collatz iteration (or more
precisely, the closely related Syracuse iteration), which in turn follows from estimation
of the characteristic function of a certain skew random walk on a 3-adic cyclic group
Z/3nZ at high frequencies. This estimation is achieved by studying how a certain
two-dimensional renewal process interacts with a union of triangles associated to a
given frequency.

1. Introduction

1.1. Statement of main result. Let N := {0, 1, 2, . . . } denote the natural numbers, so
that N+1 = {1, 2, 3, . . . } are the positive integers. The Collatz map Col : N+1→ N+1
is defined by setting Col(N) := 3N + 1 when N is odd and Col(N) := N/2 when N is
even. For any N ∈ N + 1, let Colmin(N) := min ColN(N) = infn∈N Coln(N) denote the
minimal element of the Collatz orbit ColN(N) := {N,Col(N),Col2(N), . . . }. We have
the infamous Collatz conjecture (also known as the 3x+ 1 conjecture):

Conjecture 1.1 (Collatz conjecture). We have Colmin(N) = 1 for all N ∈ N + 1.

We refer the reader to [14], [6] for extensive surveys and historical discussion of this
conjecture.

While the full resolution of Conjecture 1.1 remains well beyond reach of current methods,
some partial results are known. Numerical computation has verified Colmin(N) = 1 for
all N ≤ 5.78 × 1018 [17], for all N ≤ 1020 [18], and most recently for all N ≤ 268 ≈
2.95× 1020 [3], while Krasikov and Lagarias [13] showed that

#{N ∈ N + 1 ∩ [1, x] : Colmin(N) = 1} � x0.84
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2 TERENCE TAO

for all sufficiently large x, where #E denotes the cardinality of a finite set E, and our
conventions for asymptotic notation are set out in Section 2. In this paper we will
focus on a different type of partial result, in which one establishes upper bounds on the
minimal orbit value Colmin(N) for “almost all” N ∈ N + 1. For technical reasons, the
notion of “almost all” that we will use here is based on logarithmic density, which has
better approximate multiplicative invariance properties than the more familiar notion of
natural density (see [20] for a related phenomenon in a more number-theoretic context).
Due to the highly probabilistic nature of the arguments in this paper, we will define
logarithmic density using the language of probability theory.

Definition 1.2 (Almost all). Given a finite non-empty subset R of N + 1, we define1

Log(R) to be a random variable taking values in R with the logarithmically uniform
distribution

P(Log(R) ∈ A) =

∑
N∈A∩R

1
N∑

N∈R
1
N

for all A ⊂ N + 1. The logarithmic density of a set A ⊂ N + 1 is then defined to
be limx→∞ P(Log(N + 1 ∩ [1, x]) ∈ A), provided that the limit exists. We say that a
property P (N) holds for almost all N ∈ N+ 1 if P (N) holds for N in a subset of N+ 1
of logarithmic density 1, or equivalently if

lim
x→∞

P(P (Log(N + 1 ∩ [1, x]))) = 1.

In Terras [21] (and independently Everett [8]) it was shown that Colmin(N) < N for
almost all N . This was improved by Allouche [1] to Colmin(N) < N θ for almost all
N , and any fixed constant θ > 3

2
− log 3

log 2
≈ 0.869; the range of θ was later extended to

θ > log 3
log 4
≈ 0.7924 by Korec [9]. (Indeed, in these results one can use natural density

instead of logarithmic density to define “almost all”.) It is tempting to try to iterate
these results to lower the value of θ further. However, one runs into the difficulty that the
uniform (or logarithmic) measure does not enjoy any invariance properties with respect
to the Collatz map: in particular, even if it is true that Colmin(N) < xθ for almost all

N ∈ [1, x], and Colmin(N ′) ≤ xθ
2

for almost all N ′ ∈ [1, xθ], the two claims cannot be

immediately concatenated to imply that Colmin(N) ≤ xθ
2

for almost all N ∈ [1, x], since
the Collatz iteration may send almost all of [1, x] into a very sparse subset of [1, xθ],

and in particular into the exceptional set of the latter claim Colmin(N ′) ≤ xθ
2
.

Nevertheless, in this paper we show that it is possible to locate an alternate probability
measure (or more precisely, a family of probability measures) on the natural numbers
with enough invariance properties that an iterative argument does become fruitful. More
precisely, the main result of this paper is the following improvement of these “almost
all” results.

1In this paper all random variables will be denoted by boldface symbols, to distinguish them from
purely deterministic quantities that will be denoted by non-boldface symbols. When it is only the
distribution of the random variable that is important, we will use multi-character boldface symbols such
as Log, Unif , or Geom to denote the random variable, but when the dependence or independence
properties of the random variable are also relevant, we shall usually use single-character boldface
symbols such as a or j instead.
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Theorem 1.3 (Almost all Collatz orbits attain almost bounded values). Let f : N+1→
R be any function with limN→∞ f(N) = +∞. Then one has Colmin(N) < f(N) for
almost all N ∈ N + 1 (in the sense of logarithmic density).

Thus for instance one has Colmin(N) < log log log logN for almost all N .

Remark 1.4. One could ask whether it is possible to sharpen the conclusion of Theorem
1.3 further, to assert that there is an absolute constant C0 such that Colmin(N) ≤ C0 for
almost all N ∈ N+1. However this question is likely to be almost as hard to settle as the
full Collatz conjecture, and out of reach of the methods of this paper. Indeed, suppose
for any given C0 that there existed an orbit ColN(N0) = {N0,Col(N0),Col2(N0), . . . }
that never dropped below C0 (this is the case if there are infinitely many periodic
orbits, or if there is at least one unbounded orbit). Then probabilistic heuristics (such
as (1.16) below) suggest that for a positive density set of N ∈ N+1, the orbit ColN(N) =
{N,Col(N),Col2(N), . . . } should encounter one of the elements Coln(N0) of the orbit
of N0 before going below C0, and then the orbit of N will never dip below C0. However,
Theorem 1.3 is easily seen2 to be equivalent to the assertion that for any δ > 0, there
exists a constant Cδ such that Colmin(N) ≤ Cδ for all N in a subset of N + 1 of
lower logarithmic density (in which the limit in the definition of logarithmic density is
replaced by the limit inferior) at least 1 − δ; in fact (see Theorem 3.1) our arguments
give a constant of the form Cδ � exp(δ−O(1)), and it may be possible to refine the subset
so that the logarithmic density (as opposed to merely the lower logarithmic density)
exists and is at least 1 − δ. In particular3, it is possible in principle that a sufficiently
explicit version of the arguments here, when combined with numerical verification of
the Collatz conjecture, can be used to show that the Collatz conjecture holds for a set
of N of positive logarithmic density. Also, it is plausible that some refinement of the
arguments below will allow one to replace logarithmic density by natural density in the
definition of “almost all”.

1.2. Syracuse formulation. We now discuss the methods of proof of Theorem 1.3.
It is convenient to replace the Collatz map Col : N + 1 → N + 1 with a slightly more
tractable acceleration N 7→ Colf(N)(N) of that map. One common instance of such
an acceleration in the literature is the map Col2 : N + 1 → N + 1, defined by setting
Col2(N) := Col2(N) = 3N+1

2
when N is odd and Col2(N) := N

2
when N is even. Each

iterate of the map Col2 performs exactly one division by 2, and for this reason Col2 is a
particularly convenient choice of map when performing “2-adic” analysis of the Collatz
iteration. It is easy to see that Colmin(N) = (Col2)min(N) for all N ∈ N + 1, so all the
results in this paper concerning Col may be equivalently reformulated using Col2. The
triple iterate Col3 was also recently proposed as an acceleration in [5]. However, the
methods in this paper will rely instead on “3-adic” analysis, and it will be preferable
to use an acceleration of the Collatz map (first appearing to the author’s knowledge in
[7]) which performs exactly one multiplication by 3 per iteration. More precisely, let

2Indeed, if the latter assertion failed, then there exists a δ such that the set {N ∈ N+1 : Colmin(N) ≤
C} has lower logarithmic density less than 1− δ for every C. A routine diagonalisation argument then
shows that there exists a function f growing to infinity such that {N ∈ N + 1 : Colmin(N) ≤ f(N)}
has lower logarithmic density at most 1− δ, contradicting Theorem 1.3.

3We thank Ben Green for this observation.
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2N + 1 = {1, 3, 5, . . . } denote the odd natural numbers, and define the Syracuse map
Syr : 2N + 1→ 2N + 1 (OEIS A075677) to be the largest odd number dividing 3N + 1;
thus for instance

Syr(1) = 1; Syr(3) = 5; Syr(5) = 1; Syr(7) = 11.

Equivalently, one can write

Syr(N) = Colν2(3N+1)+1(N) = Affν2(3N+1)(N) (1.1)

where for each positive integer a ∈ N + 1, Affa : R→ R denotes the affine map

Affa(x) :=
3x+ 1

2a

and for each integer M and each prime p, the p-valuation νp(M) of M is defined as the
largest natural number a such that pa divides M (with the convention νp(0) = +∞).
(Note that ν2(3N +1) is always a positive integer when N is odd.) For any N ∈ 2N+1,
let Syrmin(N) := min SyrN(N) be the minimal element of the Syracuse orbit

SyrN(N) := {N, Syr(N), Syr2(N), . . . }.

This Syracuse orbit SyrN(N) is nothing more than the odd elements of the corresponding
Collatz orbit ColN(N), and from this observation it is easy to verify the identity

Colmin(N) = Syrmin(N/2ν2(N)) (1.2)

for any N ∈ N + 1. Thus, the Collatz conjecture can be equivalently rephrased as

Conjecture 1.5 (Collatz conjecture, Syracuse formulation). We have Syrmin(N) = 1
for all N ∈ 2N + 1.

We may similarly reformulate Theorem 1.3 in terms of the Syracuse map. We say that
a property P (N) holds for almost all N ∈ 2N + 1 if

lim
x→∞

P(P (Log(2N + 1 ∩ [1, x]))) = 1,

or equivalently if P (N) holds for a set of odd natural numbers of logarithmic density
1/2. Theorem 1.3 is then equivalent to

Theorem 1.6 (Almost all Syracuse orbits attain almost bounded values). Let f : 2N+
1 → R be a function with limN→∞ f(N) = +∞. Then one has Syrmin(N) < f(N) for
almost all N ∈ 2N + 1.

Indeed, if Theorem 1.6 holds and f : N + 1 → R is such that limN→∞ f(N) = +∞,
then from (1.2) we see that for any a ∈ N, the set of N ∈ N + 1 with ν2(N) = a and
Colmin(N) = Syrmin(N/2a) < f(N) has logarithmic density 2−a. Summing over any
finite range 0 ≤ a ≤ a0 we obtain a set of logarithmic density 1 − 2−a0 on which the
claim Colmin(N) < f(N) holds, and on sending a0 to infinity one obtains Theorem 1.3.
The converse implication (which we will not need) is also straightforward and left to
the reader.
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The iterates Syrn of the Syracuse map can be described explicitly as follows. For any
finite tuple ~a = (a1, . . . , an) ∈ (N + 1)n of positive integers, we define the composition
Aff~a = Affa1,...,an : R→ R to be the affine map

Affa1,...,an(x) := Affan(Affan−1(. . . (Affa1(x)) . . . )).

A brief calculation shows that

Affa1,...,an(x) = 3n2−|~a|x+ Fn(~a) (1.3)

where the size |~a| of a tuple ~a is defined as

|~a| := a1 + · · ·+ an, (1.4)

and we define the n-Syracuse offset map Fn : (N + 1)n → Z[1
2
] to be the function

Fn(~a) :=
n∑

m=1

3n−m2−a[m,n]

= 3n−12−a[1,n] + 3n−22−a[2,n] + · · ·+ 312−a[n−1,n] + 2−an ,

(1.5)

where we adopt the summation notation

a[j,k] :=
k∑
i=j

ai (1.6)

for any 1 ≤ j ≤ k ≤ n, thus for instance |~a| = a[1,n]. The n-Syracuse offset map Fn
takes values in the ring Z[1

2
] := {M

2a
: M ∈ Z, a ∈ N} formed by adjoining 1

2
to the

integers.

By iterating (1.1) and then using (1.3), we conclude that

Syrn(N) = Aff~a(n)(N)(N) = 3n2−|~a
(n)(N)|N + Fn(~a(n)(N)) (1.7)

for any N ∈ 2N+1 and n ∈ N, where we define n-Syracuse valuation ~a(n)(N) ∈ (N+1)n

of N to be the tuple

~a(n)(N) :=
(
ν2(3N + 1), ν2(3Syr(N) + 1), . . . , ν2(3Syrn−1(N) + 1)

)
. (1.8)

This tuple is referred to as the n-path of N in [12].

The identity (1.7) asserts that Syrn(N) is the image of N under a certain affine map
Aff~a(n)(N) that is determined by the n-Syracuse valuation ~a(n)(N) of N . This suggests
that in order to understand the behaviour of the iterates Syrn(N) of a typical large
number N , one needs to understand the behaviour of n-Syracuse valuation ~a(n)(N), as
well as the n-Syracuse offset map Fn. For the former, we can gain heuristic insight by
observing that for a positive integer a, the set of odd natural numbers N ∈ 2N+ 1 with
ν2(3N + 1) = a has (logarithmic) relative density 2−a. To model this probabilistically,
we introduce the following probability distribution:

Definition 1.7 (Geometric random variable). If µ > 1, we use Geom(µ) to denote a
geometric random variable of mean µ, that is to say Geom(µ) takes values in N + 1
with

P(Geom(µ) = a) =
1

µ

(
µ− 1

µ

)a−1
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for all a ∈ N + 1. We use Geom(µ)n to denote a tuple of n independent, identically
distributed (or iid for short) copies of Geom(µ), and use X ≡ Y to denote the assertion
that two random variables X,Y have the same distribution. Thus for instance

P(a = a) = 2−a

whenever a ≡ Geom(2) and a ∈ N + 1, and more generally

P(~a = ~a) = 2−|~a|

whenever ~a ≡ Geom(2)n and ~a ∈ (N + 1)n for some n ∈ N.

In this paper, the only geometric random variables we will actually use are Geom(2)
and Geom(4).

We will then be guided by the following heuristic:

Heuristic 1.8 (Valuation heuristic). If N is a “typical” large odd natural number,
and n is much smaller than logN , then the n-Syracuse valuation ~a(n)(N) behaves like
Geom(2)n.

We can make this heuristic precise as follows. Given two random variables X,Y taking
values in the same discrete space R, we define the total variation dTV(X,Y) between
the two variables to be the total variation of the difference in the probability measures,
thus

dTV(X,Y) :=
∑
r∈R

|P(X = r)− P(Y = r)|. (1.9)

Note that

sup
E⊂R
|P(X ∈ E)− P(Y ∈ E)| ≤ dTV(X,Y) ≤ 2 sup

E⊂R
|P(X ∈ E)− P(Y ∈ E)|. (1.10)

For any finite non-empty set R, let Unif(R) denote a uniformly distributed random
variable on R. Then we have the following result, proven in Section 4:

Proposition 1.9 (Distribution of n-Syracuse valuation). Let n ∈ N, and let N be a
random variable taking values in 2N+1. Suppose there exist an absolute constant c0 > 0
and some natural number n′ ≥ (2+c0)n such that N mod 2n

′
is approximately uniformly

distributed in the odd residue classes (2Z + 1)/2n
′Z of Z/2`Z, in the sense that

dTV(N mod 2n
′
,Unif((2Z + 1)/2n

′Z))� 2−n
′
. (1.11)

Then
dTV(~a(n)(N),Geom(2)n)� 2−c1n (1.12)

for some absolute constant c1 > 0 (depending on c0). The implied constants in the
asymptotic notation are also permitted to depend on c0.

Informally, this proposition asserts that Heuristic 1.8 is justified whenever N is ex-
pected to be uniformly distributed modulo 2n

′
for some n′ slightly larger than 2n. The

hypothesis (1.11) is somewhat stronger than what is actually needed for the conclusion
(1.12) to hold, but this formulation of the implication will suffice for our applications.
We will apply this proposition in Section 5, not to the original logarithmic distribution
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Log(2N + 1 ∩ [1, x]) (which has too heavy a tail near 1 for the hypothesis (1.11) to
apply), but to the variant Log(2N + 1 ∩ [y, yα]) for some large y and some α > 1 close
to 1.

Remark 1.10. Another standard way in the literature to justify Heuristic 1.8 is to
consider the Syracuse dynamics on the 2-adic integers Z2 := lim←−m Z/2mZ, or more
precisely on the odd 2-adics 2Z2 + 1. As the 2-valuation ν2 remains well defined on
(almost all of) Z2, one can extend the Syracuse map Syr to a map on 2Z2 + 1. As is
well known (see e.g., [14]), the Haar probability measure on 2Z2 + 1 is preserved by this
map, and if Haar(2Z2 + 1) is a random element of 2Z2 + 1 drawn using this measure,
then it is not difficult (basically using the 2-adic analogue of Lemma 2.1 below) to show
that the random variables ν2(3Syrj(Haar(2Z2 + 1)) + 1) for j ∈ N are iid copies of
Geom(2). However, we will not use this 2-adic formalism in this paper.

In practice, the offset Fn(~a) is fairly small (in an Archimedean sense) when n is not too
large; indeed, from (1.5) we have

0 ≤ Fn(~a) ≤ 3n2−an ≤ 3n (1.13)

for any n ∈ N and ~a ∈ (N+ 1)n. For large N , we then conclude from (1.7) that we have
the heuristic approximation

Syrn(N) ≈ 3n2−|~a
(n)(N)|N

and hence by Heuristic 1.8 we expect Syrn(N) to behave statistically like

Syrn(N) ≈ 3n2−|Geom(2)n|N = N exp(n log 3− |Geom(2)n| log 2) (1.14)

if n is much smaller than logN . One can view the sequence n 7→ n log 3−|Geom(2)n| log 2
as a simple random walk on R with negative drift log 3− 2 log 2 = log 3

4
. From the law

of large numbers we expect to have

|Geom(2)n| ≈ 2n (1.15)

most of the time, thus we are led to the heuristic prediction

Syrn(N) ≈ (3/4)nN (1.16)

for typical N ; indeed, from the central limit theorem or the Chernoff bound we in fact
expect the refinement

Syrn(N) = exp(O(n1/2))(3/4)nN (1.17)

for “typical” N . In particular, we expect the Syracuse orbit N, Syr(N), Syr2(N), . . . to
decay geometrically in time for typical N , which underlies the usual heuristic argument
supporting the truth of Conjecture 1.1; see [16], [10] for further discussion. We remark
that the multiplicative inaccuracy of exp(O(n1/2)) in (1.17) is the main reason why we
work with logarithmic density instead of natural density in this paper (see also [11], [15]
for a closely related “Benford’s law” phenomenon).
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1.3. Reduction to a stablisation property for first passage locations. Roughly
speaking, Proposition 1.9 lets one obtain good control on the Syracuse iterates Syrn(N)
for almost all N and for times n up to c logN for a small absolute constant c. This
already can be used in conjunction with a rigorous version of (1.16) or (1.17) to recover
the previously mentioned result Syrmin(N) ≤ N1−c for almost all N and some absolute
constant c > 0; see Section 5 for details. In the language of evolutionary partial differ-
ential equations, these type of results can be viewed as analogous to “almost sure local
wellposedness” results, in which one has good short-time control on the evolution for
almost all choices of initial condition N .

In this analogy, Theorem 1.6 then corresponds to an “almost sure almost global well-
posedness” result, where one needs to control the solution for times so large that the
evolution gets arbitrary close to the bounded state N = O(1). To bootstrap from almost
sure local wellposedness to almost sure almost global wellposedness, we were inspired by
the work of Bourgain [4], who demonstrated an almost sure global wellposedness result
for a certain nonlinear Schrödinger equation by combining local wellposedness theory
with a construction of an invariant probability measure for the dynamics. Roughly
speaking, the point was that the invariance of the measure would almost surely keep
the solution in a “bounded” region of the state space for arbitrarily long times, allowing
one to iterate the local wellposedness theory indefinitely.

In our context, we do not expect to have any useful invariant probability measures for
the dynamics due to the geometric decay (1.16) (and indeed Conjecture 1.5 would imply
that the only invariant probability measure is the Dirac measure on {1}). Instead, we
can construct a family of probability measures νx which are approximately transported
to each other by certain iterations of the Syracuse map (by a variable amount of time).
More precisely, given a threshold x ≥ 1 and an odd natural number N ∈ 2N+ 1, define
the first passage time

Tx(N) := inf{n ∈ N : Syrn(N) ≤ x},

with the convention that Tx(N) := +∞ if Syrn(N) > x for all n. (Of course, if Conjec-
ture 1.5 were true, this latter possibility could not occur, but we will not be assuming
this conjecture in our arguments.) We then define the first passage location

Passx(N) := SyrTx(N)(N)

with the (somewhat arbitrary and artificial) convention that Syr∞(N) := 1; thus
Passx(N) is the first location of the Syracuse orbit SyrN(N) that falls inside [1, x],
or 1 if no such location exists; if we ignore the latter possibility, then Passx can be
viewed as a further acceleration of the Collatz and Syracuse maps. We will also need
a constant α > 1 sufficiently close to one. The precise choice of this parameter is not
critical, but for sake of concreteness we will set

α := 1.001. (1.18)

The key proposition is then

Proposition 1.11 (Stabilisation of first passage). For each sufficiently large y, let Ny

be a random variable with distribution Ny ≡ Log(2N+ 1∩ [y, yα]) (note for sufficiently
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large y that 2N + 1 ∩ [y, yα] is non-empty). Then for sufficiently large x, we have the
estimates

P(Tx(Ny) = +∞)� x−c (1.19)

for y = xα, xα
2
, and also

dTV(Passx(Nxα),Passx(Nxα2 ))� log−c x (1.20)

for some absolute constant c > 0.

Informally, this theorem asserts that the Syracuse orbits of Nxα and Nxα2 are almost
indistinguishable from each other once they pass x, as long as one synchronises the
orbits so that they simultaneously pass x for the first time. In Section 3 we shall see
how Theorem 1.6 (and hence Theorem 1.3) follows from Proposition 1.11; basically the
point is that (1.19), (1.20) imply that the first passage map Passx approximately maps
the distribution νxα of Passxα(Nxα2 ) to the distribution νx of Passx(Nxα), and one can
then iterate this to map almost all of the probabilistic mass of Ny for large y to be
arbitrarily close to the bounded state N = O(1). The implication is very general and
does not use any particular properties of the Syracuse map beyond (1.19), (1.20).

The estimate (1.19) is easy to establish; it is (1.20) that is the most important and dif-
ficult conclusion of Proposition 1.11. We remark that the bound of O(log−c x) in (1.20)
is stronger than is needed for this argument; any bound of the form O((log log x)−1−c)
would have sufficed. Conversely, it may be possible to improve the bound in (1.20)
further, perhaps all the way to x−c.

1.4. Fine-scale mixing of Syracuse random variables. It remains to establish
Proposition 1.11. Since the constant α in (1.18) is close to 1, this proposition falls under
the regime of a (refined) “local wellposedness” result, since from the heuristic (1.16) (or
(1.17)) we expect the first passage time Tx(Ny) to be comparable to a small multiple of
log Ny. Inspecting the iteration formula (1.7), the behaviour of the n-Syracuse valuation
~a(n)(Ny) for such times n is then well understood thanks to Proposition 1.9; the main
remaining difficulty is to understand the behaviour of the n-Syracuse offset map Fn : (N+
1)n → Z[1

2
], and more specifically to analyse the distribution of the random variable

Fn(Geom(2)n) mod 3k for various n, k, where by abuse of notation we use x 7→ x mod 3k

to denote the unique ring homomorphism from Z[1
2
] to Z/3kZ (which in particular maps

1
2

to the inverse 3k+1
2

mod 3k of 2 mod 3k). Indeed, from (1.7) one has

Syrn(N) = Fn(~a(n)(N)) mod 3k

whenever 0 ≤ k ≤ n and N ∈ 2N + 1. Thus, if n,N, n′, c0 obey the hypotheses of
Proposition 1.9, one has

dTV(Syrn(N) mod 3k, Fn(Geom(2)n) mod 3k)� 2−c1n

for all 0 ≤ k ≤ n. If we now define the Syracuse random variables Syrac(Z/3nZ) for
n ∈ N to be random variables on the cyclic group Z/3nZ with the distribution

Syrac(Z/3nZ) ≡ Fn(Geom(2)n) mod 3n (1.21)
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then from (1.5) we see that

Syrac(Z/3nZ) mod 3k ≡ Syrac(Z/3kZ) (1.22)

whenever k ≤ n, and thus

dTV(Syrn(N) mod 3k,Syrac(Z/3kZ))� 2−c1n.

We thus see that the 3-adic distribution of the Syracuse orbit SyrN(N) is controlled
(initially, at least) by the random variables Syrac(Z/3nZ). The distribution of these
random variables can be computed explicitly for any given n via the following recursive
formula:

Lemma 1.12 (Recursive formula for Syracuse random variables). For any n ∈ N and
x ∈ Z/3n+1Z, one has

P(Syrac(Z/3n+1Z) = x) =

∑
1≤a≤2×3n:2ax=1 mod 3 2−aP

(
Syrac(Z/3nZ) = 2ax−1

3

)
1− 2−2×3n

,

where 2ax−1
3

is viewed as an element of Z/3nZ.

Proof. Let (a1, . . . , an+1) ≡ Geom(2)n+1 be n + 1 iid copies of Geom(2). From (1.5)
we have

Fn+1(an+1, . . . , a1) =
3Fn(an+1, . . . , a2) + 1

2a1

and thus we have

Syrac(Z/3n+1Z) ≡ 3Syrac(Z/3nZ) + 1

2Geom(2)
,

where 3Syrac(Z/3nZ) is viewed as an element of Z/3n+1Z, and the random variables
Syrac(Z/3nZ),Geom(2) on the right hand side are understood to be independent. We
therefore have

P(Syrac(Z/3n+1Z) = x) =
∑
a∈N+1

2−aP
(

3Syrac(Z/3nZ) + 1

2a
= x

)
=

∑
a∈N+1:2ax=1 mod 3

2−aP
(

Syrac(Z/3nZ) =
2ax− 1

3

)
.

By Euler’s theorem, the quantity 2ax−1
3
∈ Z/3nZ is periodic in a with period 2 × 3n.

Splitting a into residue classes modulo 2 × 3n and using the geometric series formula,
we obtain the claim. �

Thus for instance, we trivially have Syrac(Z/30Z) takes the value 0 mod 1 with prob-
ability 1; then by the above lemma, Syrac(Z/3Z) takes the values 0, 1, 2 mod 3 with
probabilities 0, 1/3, 2/3 respectively; another application of the above lemma then re-
veals that Syrac(Z/32Z) takes the values 0, 1, . . . , 8 mod 9 with probabilities

0,
8

63
,
16

63
, 0,

11

63
,

4

63
, 0,

2

63
,
22

63

respectively; and so forth. More generally, one can numerically compute the distribution
of Syrac(Z/3nZ) exactly for small values of n, although the time and space required to
do so increases exponentially with n.



COLLATZ ORBITS ATTAIN ALMOST BOUNDED VALUES 11

Remark 1.13. One could view the Syracuse random variables Syrac(Z/3nZ) as pro-
jections

Syrac(Z/3nZ) ≡ Syrac(Z3) mod 3n

of a single random variable Syrac(Z3) taking values in the 3-adics Z3 := lim←−n Z/3
nZ

(equipped with the usual metric d(x, y) := 3−ν3(x−y)), which can for instance be defined
as

Syrac(Z3) ≡
∞∑
j=0

3j2−a[1,j+1]

= 2−a1 + 312−a[1,2] + 322−a[1,3] + . . .

where a1, a2, . . . are iid copies of Geom(2); note that this series converges in Z3. One
can view the distribution of Syrac(Z3) as the unique stationary measure for the discrete
Markov process4 on Z3 that maps each x ∈ Z3 to 3x+1

2a
for each a ∈ N+1 with transition

probability 2−a (this fact is implicit in the proof of Lemma 1.12). However, we will not
explicitly adopt the 3-adic perspective in this paper, preferring to work instead with
the finite projections Syrac(Z/3nZ) of Syrac(Z3).

While the Syracuse random variables Syrac(Z/3nZ) fail to be uniformly distributed on
Z/3nZ, we can show that they do approach uniform distribution n → ∞ at fine scales
(as measured in a 3-adic sense), and this turns out to be the key ingredient needed to
establish Proposition 1.11. More precisely, we will show

Proposition 1.14 (Fine scale mixing of n-Syracuse offsets). For all 1 ≤ m ≤ n one
has

Oscm,n (P(Syrac(Z/3nZ) = Y mod 3n))Y ∈Z/3nZ �A m
−A (1.23)

for any fixed A > 0, where the oscillation Oscm,n(cY )Y ∈Z/3nZ of a tuple of real numbers
cY ∈ R indexed by Z/3nZ at 3-adic scale 3−m is defined by

Oscm,n(cY )Y ∈Z/3nZ :=
∑

Y ∈Z/3nZ

∣∣∣∣∣∣cY − 3m−n
∑

Y ′∈Z/3nZ:Y ′=Y mod 3m

cY ′

∣∣∣∣∣∣ . (1.24)

Informally, the above proposition asserts that the Syracuse random variable Syrac(Z/3nZ)
is approximately uniformly distributed in “fine-scale” or “high-frequency” cosets Y +
3mZ/3nZ, after conditioning to the event Syrac(Z/3nZ) = Y mod 3m. Indeed, one
could write the left-hand side of (1.23) if desired as

dTV(Syrac(Z/3nZ),Syrac(Z/3nZ) + Unif(3mZ/3nZ))

where the random variables Syrac(Z/3nZ),Unif(3mZ/3nZ) are understood to be inde-
pendent. In Section 5, we show how Proposition 1.11 (and hence Theorem 1.3) follows
from Proposition 1.14 and Proposition 1.9.

4This Markov process may possibly be related to the 3-adic Markov process for the inverse Collatz
map studied in [24]. See also a recent investigation of 3-adic irregularities of the Collatz iteration in
[23].
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Remark 1.15. One can heuristically justify this mixing property as follows. The geo-
metric random variable Geom(2) can be computed to have a Shannon entropy of log 4;
thus, by asymptotic equipartition, the random variable Geom(2)n is expected to behave
like a uniform distribution on 4n+o(n) separate tuples in (N + 1)n. On the other hand,
the range Z/3nZ of the map ~a 7→ Fn(~a) mod 3n only has cardinality 3n. While this map
does have substantial irregularities at coarse 3-adic scales (for instance, it always avoids
the multiples of 3), it is not expected to exhibit any such irregularity at fine scales, and
so if one models this map by a random map from 4n+o(n) elements to Z/3nZ one is led
to the estimate (1.23) (in fact this argument predicts a stronger bound of exp(−cm) for
some c > 0, which we do not attempt to establish here).

Remark 1.16. In order to upgrade logarithmic density to natural density in our results,
it seems necessary to strengthen Proposition 1.14 by establishing a suitable fine scale
mixing property of the entire random affine map AffGeom(2)n , as opposed to just the
offset Fn(Geom(2)n). This looks plausibly attainable from the methods in this paper,
but we do not pursue this question here.

To prove Proposition 1.14, we use a partial convolution structure present in the n-
Syracuse offset map, together with Plancherel’s theorem, to reduce matters to estab-
lishing a superpolynomial decay bound for the characteristic function (or Fourier coef-
ficients) of a Syracuse random variable Syrac(Z/3nZ). More precisely, in Section 6 we
derive Proposition 1.14 from

Proposition 1.17 (Decay of characteristic function). Let n ≥ 1, and let ξ ∈ Z/3nZ be
not divisible by 3. Then

Ee−2πiξSyrac(Z/3nZ)/3n �A n
−A (1.25)

for any fixed A > 0.

A key point here is that the implied constant in (1.25) is uniform in n and ξ, though as
indicated we permit it to depend on A.

Remark 1.18. In the converse direction, it is not difficult to use the triangle inequality
to establish the inequality

|Ee−2πiξSyrac(Z/3nZ)/3n| ≤ Oscn−1,n (P(Syrac(Z/3nZ) = Y mod 3n))Y ∈Z/3nZ

whenever ξ is not a multiple of 3 (so in particular the function x 7→ e−2πiξx/3n has mean
zero on cosets of 3n−1Z/3nZ). Thus Proposition 1.17 and Proposition 1.14 are in fact
equivalent. One could also equivalently phrase Proposition 1.17 in terms of the decay
properties of the characteristic function of Syrac(Z3) (which would be defined on the

Pontryagin dual Ẑ3 = Q3/Z3 of Z3), but we will not do so here.

The remaining task is to establish Proposition 1.17. This turns out to be the most
difficult step in the argument, and is carried out in Section 7. From (1.5), (1.21) and
reversing the order of the random variables a1, . . . , an, we can describe the distribution
of the Syracuse random variable by the formula

Syrac(Z/3nZ) ≡ 2−a1 + 312−a[1,2] + · · ·+ 3n−12−a[1,n] mod 3n, (1.26)
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with (a1, . . . , an) ≡ Geom(2)n. If this random variable was the sum of independent ran-
dom variables, then the characteristic function of Syrac(Z/3nZ) would factor as some-
thing like a Riesz product of cosines, and its estimation would be straightforward. Unfor-
tunately, the expression (1.26) does not obviously resolve into such a sum of independent
random variables; however, by grouping adjacent terms 32j−22−a[1,2j−1] , 32j−12−a[1,2j] in
(1.26) into pairs, one can at least obtain a decomposition into the sum of independent
expressions once one conditions on the sums bj := a2j−1 + a2j (which are iid copies of
a Pascal distribution Pascal). This lets one express the characteristic functions as an
average of products of cosines (times a phase), where the average is over trajectories of a
certain random walk v1,v[1,2],v[1,3], . . . in Z2 with increments in the first quadrant that
we call a two-dimensional renewal process. If we color certain elements of Z2 “white”
when the associated cosines are small, and “black” otherwise, then the problem boils
down to ensuring that this renewal process encounters a reasonably large number of
white points (see Figure 3 in Section 7).

From some elementary number theory, we will be able to describe the black regions of
Z2 as a union of “triangles” ∆ that are well separated from each other; again, see Figure
3. As a consequence, whenever the renewal process passes through a black triangle, it
will very likely also pass through at least one white point after it exits the triangle. This
argument is adequate so long as the triangles are not too large in size; however, for very
large triangles it does not produce a sufficient number of white points along the renewal
process. However, it turns out that large triangles tend to be fairly well separated from
each other (at least in the neighbourhood of even larger triangles), and this geometric
observation allows one to close the argument.

As with Proposition 1.14, it is possible that the bound in Proposition 1.17 could be
improved, perhaps to as far as O(exp(−cn)) for some c > 0. However, we will not need
or pursue such a bound here.

The author is supported by NSF grant DMS-1764034 and by a Simons Investigator
Award, and thanks Marek Biskup for useful discussions, and Ben Green, Matthias
Hippold, Alex Kontorovich, Alexandre Patriota, Sankeerth Rao, Mary Rees, Lior Sil-
berman, and several anonymous commenters on his blog for corrections and other com-
ments. We are especially indebted to the anonymous referee for a careful reading and
many useful suggestions.

2. Notation and preliminaries

We use the asymptotic notation X � Y , Y � X, or X = O(Y ) to denote the bound
|X| ≤ CY for an absolute constant C. We also write X � Y for X � Y � X. We
also use c > 0 to denote various small constants that are allowed to vary from line to
line, or even within the same line. If we need the implied constants to depend on other
parameters, we will indicate this by subscripts unless explicitly stated otherwise, thus
for instance X �A Y denotes the estimate |X| ≤ CAY for some CA depending on A.
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If E is a set, we use 1E to denote its indicator, thus 1E(n) equals 1 when n ∈ E and 0
otherwise. Similarly, if S is a statement, we define the indicator 1S to equal 1 when S
is true and 0 otherwise, thus for instance 1E(n) = 1n∈E. If E,F are two events, we use
E ∧F to denote their conjunction (the event that both E,F hold) and E to denote the
complement of E (the event that E does not hold).

The following alternate description of the n-Syracuse valuation ~a(n)(N) (variants of
which have frequently occurred in the literature on the Collatz conjecture, see e.g., [19])
will be useful.

Lemma 2.1 (Description of n-Syracuse valuation). Let N ∈ 2N + 1 and n ∈ N. Then
~a(n)(N) is the unique tuple ~a in (N + 1)n for which Aff~a(N) ∈ 2N + 1.

Proof. It is clear from (1.7) that Aff~a(n)(N) ∈ 2N + 1. It remains to prove uniqueness.
The claim is easy for n = 0, so suppose inductively that n ≥ 1 and that uniqueness has
already been established for n − 1. Suppose that we have found a tuple ~a ∈ (N + 1)n

for which Aff~a(N) is an odd integer. Then

Aff~a(N) = Affan(Affa1,...,an−1(N)) =
3Affa1,...,an−1(N) + 1

2an

and thus
2anAff~a(N) = 3Affa1,...,an−1(N) + 1. (2.1)

This implies that 3Affa1,...,an−1(N) is an odd natural number. But from (1.3), Affa1,...,an−1(N)
also lies in Z[1

2
]. The only way these claims can both be true is if Affa1,...,an−1(N) is

also an odd natural number, and then by induction (a1, . . . , an−1) = ~a(n−1)(N), which
by (1.7) implies that

Affa1,...,an−1(N) = Syrn−1(N).

Inserting this into (2.1) and using the fact that Aff~a(N) is odd, we obtain

an = ν2(3SyrN−1(N) + 1)

and hence by (1.8) we have ~a = ~a(n) as required. �

We record the following concentration of measure bound of Chernoff type, which also
bears some resemblance to a local limit theorem. We introduce the gaussian-type
weights

Gn(x) := exp(−|x|2/n) + exp(−|x|) (2.2)

for any n ≥ 0 and x ∈ Rd for some d ≥ 1, where we adopt the convention that
exp(−∞) = 0 (so that G0(x) = exp(−|x|)). Thus Gn(x) is comparable to 1 for
x = O(n1/2), decays in a gaussian fashion in the regime n1/2 ≤ |x| ≤ n, and decays
exponentially for |x| ≥ n.

Lemma 2.2 (Chernoff type bound). Let d ∈ N + 1, and let v be a random variable
taking values in Zd obeying the exponential tail condition

P(|v| ≥ λ)� exp(−c0λ) (2.3)

for all λ ≥ 0 and some c0 > 0. Assume the non-degeneracy condition that v is not
almost surely concentrated on any coset of any proper subgroup of Zd. Let ~µ := Ev ∈ Rd
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denote the mean of v. In this lemma all implied constants, as well as the constant c,
can depend on d, c0, and the distribution of v. Let n ∈ N, and let v1, . . . ,vn be n iid
copies of v. Following (1.6), we write v[1,n] := v1 + · · ·+ vn.

(i) For any ~L ∈ Zd, one has

P
(
v[1,n] = ~L

)
� 1

(n+ 1)d/2
Gn

(
c
(
~L− n~µ

))
.

(ii) For any λ ≥ 0, one has

P
(
|v[1,n] − n~µ| ≥ λ

)
� Gn(cλ).

Thus, for instance for any n ∈ N, we have

P (|Geom(2)n| = L)� 1√
n+ 1

Gn(c(L− 2n))

for every L ∈ Z, and

P (||Geom(2)n| − 2n| ≥ λ)� Gn(cλ).

for any λ ≥ 0.

Proof. We use the Fourier-analytic (and complex-analytic) method. We may assume
that n is positive, since the claim is trivial for n = 0. We begin with (i). Let S denote
the complex strip S := {z ∈ C : |Re(z)| < c0}, then we can define the (complexified)
moment generating function M : Sd → C by the formula

M(z1, . . . , zd) := E exp((z1, . . . , zd) · v),

where · is the usual bilinear dot product. From (2.3) and Morera’s theorem one verifies
that this is a well-defined holomorphic function of d complex variables on Sd, which is
periodic with respect to the lattice (2πiZ)d. By Fourier inversion, we have

P(v[1,n] = ~L) =
1

(2π)d

∫
[−π,π]d

M
(
i~t
)n

exp
(
−i~t · ~L

)
d~t.

By contour shifting, we then have

P(v[1,n] = ~L) =
1

(2π)d

∫
[−π,π]d

M
(
i~t+ ~λ

)n
exp

(
−(i~t+ λ) · ~L

)
d~t

whenever ~λ = (λ1, . . . , λd) ∈ (−c0, c0)d. By the triangle inequality, we thus have

P(v[1,n] = ~L)�
∫

[−π,π]d

∣∣∣M (
i~t+ ~λ

)∣∣∣n exp
(
−~λ · ~L

)
d~t.

From Taylor expansion and the non-degeneracy condition we have

M(~z) = exp

(
~z · ~µ+

1

2
Σ(~z) +O(|~z|3)

)
for all ~z ∈ Sd sufficiently close to 0, where Σ is a positive definite quadratic form (the
covariance matrix of v). From the non-degeneracy condition we also see that |M(i~t)| < 1
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whenever ~t ∈ [−π, π]d is not identically zero, hence by continuity |M(i~t + ~λ)| ≤ 1 − c
whenever ~t ∈ [−π, π]d is bounded away from zero and ~λ is sufficiently small. This
implies the estimates

|M(i~t+ ~λ)| ≤ exp
(
~λ · ~µ− c|~t|2 +O(|~λ|2)

)
for all ~t ∈ [−π, π]d and all sufficiently small ~λ ∈ Rd. Thus we have

P(v[1,n] = ~L)�
∫

[−π,π]d
exp

(
−~λ · (~L− n~µ)− cn|~t|2 +O(n|~λ|2)

)
d~t

� n−1/2 exp
(
−~λ · (~L− n~µ) +O(n|~λ|2)

)
.

If |~L − n~µ| ≤ n, we can set ~λ := c(~L − n~µ)/n for a sufficiently small c and obtain the

claim; otherwise if |~L−n~µ| > n we set ~λ := c(~L−n~µ)/|~L−n~µ| for a sufficiently small c
and again obtain the claim. This gives (i), and the claim (ii) then follows from summing

in ~L and applying the integral test. �

Remark 2.3. Informally, the above lemma asserts that as a crude first approximation
we have

v[1,n] ≈ n~µ+ Unif({k ∈ Zd : k = O(
√
n)}), (2.4)

and in particular

|Geom(2)n| ≈ Unif(Z ∩ [2n−O(
√
n), 2n+O(

√
n)]), (2.5)

thus refining (1.15). The reader may wish to use this heuristic for subsequent arguments
(for instance, in heuristically justifying (1.17)).

3. Reduction to stabilisation of first passage

In this section we show how Theorem 1.6 follows from Proposition 1.11. In fact we show
that Proposition 1.11 implies a stronger claim5 :

Theorem 3.1 (Alternate form of main theorem). For N0 ≥ 2 and x ≥ 2, one has

1

log x

∑
N∈2N+1∩[1,x]:Syrmin(N)>N0

1

N
� 1

logcN0

or equivalently

P(Syrmin(Log(2N + 1 ∩ [1, x])) ≤ N0) ≥ 1−O
(

1

logcN0

)
.

In particular, by (1.2), we have

P(Colmin(Log(N + 1 ∩ [1, x])) ≤ N0) ≥ 1−O
(

1

logcN0

)
for all x ≥ 2.

5We thank the anonymous referee for suggesting this formulation of the main theorem.
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In other words, for N0 ≥ 2, one has Syrmin(N) ≤ N0 for all N in a set of odd natural
numbers of (lower) logarithmic density 1

2
−O(log−cN0), and one also has Colmin(N) ≤

N0 for all N in a set of positive natural numbers of (lower) logarithmic density 1 −
O(log−cN0).

Proof. We may assume that N0 is larger than any given absolute constant, since the
claim is trivial for bounded N0. Let EN0 ⊂ 2N + 1 denote the set

EN0
:= {N ∈ 2N + 1 : Syrmin(N) ≤ N0}

of starting positions N of Syracuse orbits that reach N0 or below. Let α be defined
by (1.18), let x ≥ 2, and let Ny be the random variables from Proposition 1.11. Let
Bx = Bx,N0 denote the event that Tx(Nxα) < +∞ and Passx(Nxα) ∈ EN0 . Informally,
this is the event that the Syracuse orbit of Nxα reaches x or below, and then reaches
N0 or below. (For x < N0, the latter condition is automatic, while for x ≥ N0, it is the
former condition which is redundant.)

Observe that if Tx(Nxα2 ) < +∞ and Passx(Nxα2 ) ∈ EN0 , then

Txα(Nxα2 ) ≤ Tx(Nxα2 ) < +∞

and

SyrN(Passx(Nxα2 )) ⊂ SyrN(Passxα(Nxα2 ))

which implies that

Syrmin(Passxα(Nxα2 )) ≤ Syrmin(Passx(Nxα2 )) ≤ N0.

In particular, the event Bxα holds in this case. From this, (1.19), and (1.20), (1.10) we
have

P(Bxα) ≥ P(Passx(Nxα2 ) ∈ EN0 ∧ Tx(Nxα2 ) < +∞)

≥ P(Passx(Nxα2 ) ∈ EN0)−O(x−c)

≥ P(Passx(Nxα) ∈ EN0)−O(log−c x)

≥ P(Bx)−O(log−c x)

whenever x is larger than a suitable absolute constant (note that the O(x−c) error can
be absorbed into the O(log−c x) term). In fact the bound holds for all x ≥ 2, since the
estimate is trivial for bounded values of x.

Let J = J(x,N0) be the first natural number such that the quantity y := xα
−J

is less

than N
1/α
0 . Since N0 is assumed to be large, we then have (by replacing x with yα

j−2
in

the preceding estimate) that

P(Byα
j−1 ) ≥ P(Byα

j−2 )−O((αj log y)−c)

for all j = 1, . . . , J . The event Byα−1 occurs with probability 1 − O(y−c), thanks to

(1.19) and the fact that Ny ≤ yα ≤ N0. Summing the telescoping series, we conclude
that

P(ByαJ−1 ) ≥ 1−O(log−c y)
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(note that the O(y−c) error can be absorbed into the O(log−c y) term). By construction,

y ≥ N
1/α2

0 and yα
J

= x, so

P(Bx1/α) ≥ 1−O(log−cN0).

IfBx1/α holds, then Passx1/α(Nx) lies in the Syracuse orbit SyrN(Nx), and thus Syrmin(Nx) ≤
Syrmin(Passx1/α(Nx)) ≤ N0. We conclude that for any x ≥ 2, one has

P(Syrmin(Nx) > N0)� log−cN0.

By definition of Nx (and using the integral test to sum the harmonic series
∑

N∈2N+1∩[x,xα]
1
N

),
we conclude that ∑

N∈2N+1∩[x,xα]:Syrmin(N)>N0

1

N
� 1

logcN0

log x (3.1)

for all x ≥ 2. Covering the interval 2N+1∩ [1, x] by intervals of the form 2N+1∩ [y, yα]
for various y, we obtain the claim. �

Now let f : 2N + 1 → [0,+∞) be such that limN→∞ f(N) = +∞. Set f̃(x) :=

infN∈2N+1:N≥x f(N), then f̃(x)→∞ as x→∞. Applying Theorem 3.1 withN0 := f̃(x),
we conclude that ∑

N∈2N+1∩[1,x]:Syrmin(N)>f(N)

1

N
� 1

logc f̃(x)
log x

for all sufficiently large x. Since 1
logc f̃(x)

goes to zero as x → ∞, we conclude from

telescoping series that the set {N ∈ 2N + 1 : Syrmin(N) > f(N)} has zero logarithmic
density, and Theorem 1.6 follows.

4. 3-adic distribution of iterates

In this section we establish Proposition 1.9. Let n,N, c0, n
′ be as in that proposition; in

particular, n′ ≥ (2 + c0)n. In this section we allow implied constants in the asymptotic
notation, as well as the constants c > 0, to depend on c0.

We first need a tail bound on the size of the n-Syracuse valuation ~a(n)(N):

Lemma 4.1 (Tail bound). We have

P(|~a(n)(N)| ≥ n′)� 2−cn.

Proof. Write ~a(n)(N) = (a1, . . . , an), then we may split

P(|~a(n)(N)| ≥ n′) =
n−1∑
k=0

P(a[1,k] < n′ ≤ a[1,k+1])

(using the summation convention (1.6)) and so it suffices to show that

P(a[1,k] < n′ ≤ a[1,k+1])� 2−cn

for each 0 ≤ k ≤ n− 1.
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From Lemma 2.1 and (1.3) we see that

3k+12−a[1,k+1]N +
k+1∑
i=1

3k+1−i2−a[i,k+1]

is an odd integer, and thus

3k+1N +
k+1∑
i=1

3k+1−i2a[1,i−1]

is a multiple of 2a[1,k+1] . In particular, when the event a[1,k] < n′ ≤ a[1,k+1] holds, one
has

3k+1N +
k+1∑
i=1

3k+1−i2a[1,i−1] = 0 mod 2n
′
.

Thus, if one conditions to the event aj = aj, j = 1, . . . , k for some positive inte-
gers a1, . . . , ak, then N is constrained to a single residue class b mod 2n

′
depending

on a1, . . . , ak (because 3k+1 is invertible in the ring Z/2n′Z). From (1.11), (1.9) we have
the quite crude estimate

P(N = b mod 2n
′
)� 2−n

′

and hence

P(a[1,k] ≤ n′ < a[1,k+1])�
∑

a1,...,ak∈N+1:a[1,k]<n
′

2−n
′
.

The tuples (a1, . . . , ak) in the above sum are in one-to-one correspondence with the k-

element subsets {a1, a[1,2], . . . , a[1,k]} of {1, . . . , n′−1}, and hence have cardinality
(
n′−1
k

)
,

thus

P(a[1,k] < n′ ≤ a[1,k+1])� 2−n
′
(
n′ − 1

k

)
.

Since k ≤ n− 1 and n′ ≥ (2 + c0)n, the right-hand side is O(2−cn) by Stirling’s formula
(one can also use the Chernoff inequality for the sum of n′−1 Bernoulli random variables
Ber(1

2
), or Lemma 2.2). The claim follows. �

From Lemma 2.2 we also have

P(|Geom(2)n| ≥ n′)� 2−cn.

From (1.9) and the triangle inequality we therefore have

dTV(~a(n)(N),Geom(2)n) =
∑

~a∈(N+1)n:|~a|<m

|P(~a(n)(N) = ~a)−P(Geom(2)n = ~a)|+O(2−cn).

From Definition 1.7 we have

P(Geom(2)n = ~a) = 2−|~a|

so it remains to show that∑
~a∈(N+1)n:|~a|<m

|P(~a(n)(N) = ~a)− 2−|~a|| � 2−cn. (4.1)
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By Lemma 2.1, the event ~a(n)(N) = ~a occurs precisely when Aff~a(N) is an odd integer,
which by (1.3) we may write (for ~a = (a1, . . . , an)) as

3n2−a[1,n]N + 3n−12−a[1,n] + 3n−22−a[2,n] + · · ·+ 2−an ∈ 2N + 1.

Equivalently one has

3nN = −3n−1 − 3n−22a1 − · · · − 2a[1,n−1] + 2|~a| mod 2|~a|+1.

This constrains N to a single odd residue class modulo 2|~a|+1. For |~a| < n′, the proba-
bility of falling in this class can be computed using (1.11), (1.9) as 2−|~a|+O(2−n

′
). The

left-hand side of (4.1) is then bounded by

� 2−n
′
#{~a ∈ (N + 1)n : |~a| < n′} = 2−n

′
(
n′ − 1

n

)
.

The claim now follows from Stirling’s formula (or Chernoff’s inequality), as in the proof
of Lemma 4.1. This completes the proof of Proposition 1.9.

5. Reduction to fine scale mixing of the n-Syracuse offset map

We are now ready to derive Proposition 1.11 (and thus Theorem 1.3) assuming Propo-

sition 1.14. Let x be sufficiently large. We take y to be either xα or xα
2
. From the

heuristic (1.16) (or (1.17)) we expect the first passage time Passx(Ny) to be roughly

Passx(Ny) ≈
log Ny/x

log(4/3)

with high probability. Now introduce the quantities

n0 :=

⌊
log x

10 log 2

⌋
(5.1)

(so that 2n0 � x0.1) and

m0 :=

⌊
α− 1

100
log x

⌋
. (5.2)

Since the random variable Ny takes values in [y, yα], we see from (1.18) that we would
expect the bounds

m0 ≤ Tx(Ny) ≤ n0 (5.3)

to hold with high probability. We will use these parameters m0, n0 to help control the
distribution of Tx(Ny) and Passx(Ny) in order to prove (1.19), (1.20).

We begin with the proof of (1.19). Let n0 be defined by (5.1). Since Ny ≡ Log(2N +
1 ∩ [y, yα]), a routine application of the integral test reveals that

dTV(Ny mod 23n0 ,Unif((2Z + 1)/23n0Z))� 2−3n0

(with plenty of room to spare), hence by Proposition 1.9

dTV(~a(n0)(Ny),Geom(2)n0)� 2−cn0 . (5.4)

In particular, by (1.10) and Lemma 2.2 we have

P(|~a(n0)(Ny)| ≤ 1.9n0) ≤ P(|Geom(2)n0| ≤ 1.9n0) +O(2−cn0)� 2−cn0 � x−c (5.5)
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Figure 1. The Syracuse orbit n 7→ Syrn(Ny), where the vertical axis is
drawn in shifted log-scale. The diagonal lines have slope − log(4/3). For
times n up to n0, the orbit usually stays close to the dashed line, and
hence usually lies between the two dotted diagonal lines; in particular,
the first passage time Tx(Ny) will usually lie in the interval Iy. Outside
of a rare exceptional event, for any given n ∈ Iy, Syrn−m(Ny) will lie in
E ′ if and only if n = Tx(Ny) and Syrn(Ny) lies in E; equivalently, outside
of a rare exceptional event, Passx(Ny) lies in E if and only if Syrn−m(Ny)
lies in E ′ for precisely one n ∈ Iy.

(recall we allow c to vary even within the same line). On the other hand, from (1.7),
(1.5) we have

Syrn0(Ny) ≤ 3n02−|~a
(n0)(Ny)|Ny +O(3n0) ≤ 3n02−|~a

(n0)(Ny)|xα
3

+O(3n0)

and hence if |~a(n0)(Ny)| > 1.9n then

Syrn0(Ny)� 3n02−1.9n0xα
3

+O(3n0).

From (5.1), (1.18) and a brief calculation, the right-hand side is O(x0.99) (say). In
particular, for x large enough, we have

Syrn0(Ny) ≤ x,

and hence Tx(Ny) ≤ n0 < +∞ whenever |~a(n0)(Ny)| > 1.9n0 (cf., the upper bound in
(5.3)). The claim (1.19) now follows from (5.5).

Remark 5.1. This argument already establishes that Syrmin(N) ≤ N θ for almost all
N for any θ > 1/α; by optimising the numerical exponents in this argument one can
eventually recover the results of Korec [9] mentioned in the introduction. It also shows
that most odd numbers do not lie in a periodic Syracuse orbit, or more precisely that

P(Syrn(Ny) = Ny for some n ∈ N + 1)� x−c.



22 TERENCE TAO

Indeed, the above arguments show that outside of an event of probability x−c, one has
Syrm(Ny) ≤ x for some m ≤ n0, which we can assume to be minimal amongst all such
m. If Syrn(Ny) = Ny for some n, we then have

Ny = Syrn(M)−m(M) (5.6)

for M := Syrm(Ny) ∈ [1, x] that generates a periodic Syracuse orbit with period n(M).
(This period n(M) could be extremely large, and the periodic orbit could attain values
much larger than x or y, but we will not need any upper bounds on the period in our
arguments, other than that it is finite.) The number of possible pairs (M,m) obtained
in this fashion is O(xn0). By (5.6), the pair (M,m) uniquely determines Ny. Thus,
outside of the aforementioned event, a periodic orbit is only possible for at most O(xn0)
possible values of Ny; as this is much smaller than y, we thus see that a periodic orbit
is only attained with probability O(x−c), giving the claim. It is then a routine matter
to then deduce that almost all positive integers do not lie in a periodic Collatz orbit;
we leave the details to the interested reader.

Now we establish (1.20). By (1.10), it suffices to show that for E ⊂ 2N+ 1∩ [1, x], that

P(Passx(Ny) ∈ E) =
(
1 +O(log−c x)

)
Q+O(log−c x) (5.7)

for some quantity Q that can depend on x, α,E but is independent of whether y is
equal to xα or xα

2
(note that this bound automatically forces Q = O(1) when x is large,

so the first error term O(log−c x)Q on the right-hand side may be absorbed into the
second term O(log−c x)). The strategy is to manipulate the left-hand side of (5.7) into
an expression that involves the Syracuse random variables Syrac(Z/3nZ) for various n
(in a range Iy depending on y) plus a small error, and then appeal to Proposition 1.14
to remove the dependence on n and hence on y in the main term. The main difficulty
is that the first passage location Passx(Ny) involves a first passage time n = Tx(Ny)
whose value is not known in advance; but by stepping back in time by a fixed number of
steps m0, we will be able to express the left-hand side of (5.7) (up to negligible errors)
without having to explicitly refer to the first passage time.

The first step is to establish the following approximate formula for the left-hand side of
(5.7).

Proposition 5.2 (Approximate formula). Let E ⊂ 2N + 1 ∩ [1, x] and y = xα, xα
2
.

Then we have

P(Passx(Ny) ∈ E) =
∑
n∈Iy

∑
~a∈A(n−m0)

∑
M∈E′

P(Aff~a(Ny) = M) +O(log−c x) (5.8)

where Iy is the interval

Iy :=

[
log(y/x)

log 4
3

+ log0.8 x,
log(yα/x)

log 4
3

− log0.8 x

]
, (5.9)

E ′ is the set of odd natural numbers M ∈ 2N+1 such that Tx(M) = m0 and Passx(M) ∈
E with

exp(− log0.7 x)(4/3)m0x ≤M ≤ exp(log0.7 x)(4/3)m0x. (5.10)
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and for any natural number n′, A(n′) ⊂ (N+1)n
′

denotes the set of all tuples (a1, . . . , an′) ∈
(N + 1)n

′
such that

|a[1,n] − 2n| < log0.6 x (5.11)

for all 0 ≤ n ≤ n′.

A key point in this formula (5.8) is that the right-hand side does not involve the passage
time Tx(Ny) or the first passage location Passx(Ny), and the dependence on whether

y is equal to xα or xα
2

is confined to the range Iy of the summation variable n, as
well as the input Ny of the affine map Aff~a. (In particular, note that the set E ′ does
not depend on y.) We also observe from (5.9), (5.1), (5.2) that Iy ⊂ [m0, n0], which is
consistent with the heuristic (5.3).

Proof. Fix E, and write ~a(n0)(Ny) = (a1, . . . , an0). From (5.4), (1.10), and Lemma 2.2
we see that for every 0 ≤ n ≤ n0, one has

P(|a[1,n] − 2n| ≥ log0.6 x)� exp(−c log0.2 x).

Hence, if A(n0) is the set defined in the proposition, we see from the union bound that

P(~a(n0)(Ny) 6∈ A(n0))� log−10 x (5.12)

(say); this can be viewed as a rigorous analogue of the heuristic (2.5). Hence

P(Passx(Ny) ∈ E) = P(Passx(Ny) ∈ E ∧ ~a(n0)(Ny) ∈ A(n0)) +O(log−c x).

Suppose that ~a(n0)(Ny) ∈ A(n0). For any 0 ≤ n ≤ n0, we have from (1.7), (1.13) that

Syrn(Ny) = 3n2−a[1,n]Ny +O(3n0)

and hence by (5.11), (5.1) and some calculation

Syrn(Ny) = (1 +O(x−0.1))3n2−a[1,n]Ny. (5.13)

In particular, from (5.11) one has

Syrn(Ny) = exp(O(log0.6 x))(3/4)nNy (5.14)

for all 0 ≤ n ≤ n0, which can be viewed as a rigorous version of the heuristic (1.17).
With regards to Figure 1, (5.14) asserts that the Syracuse orbit stays close to the dashed
line.

As Tx(Ny) is the first time n for which Syrn(Ny) ≤ x, the estimate (5.14) gives an
approximation

Tx(Ny) =
log(Ny/x)

log 4
3

+O(log0.6 x); (5.15)

note from (5.1), (1.18) and a brief calculation that the right-hand side automatically
lies between 0 and n0 if x is large enough. In particular, if Iy is the interval (5.9), then
(5.14) will imply that Tx(Ny) ∈ Iy whenever

Ny ⊂ [y + 2 log0.8 x, yα − 2 log0.8 x];

a straightforward calculation using the integral test (and (5.12)) then shows that

P(Tx(Ny) ∈ Iy) = 1−O(log−c x). (5.16)
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Again, see Figure 1. Note from (5.1), (5.2) that Iy ⊂ [m0, n0]; compare with (5.3).

Now suppose that n is an element of Iy. In particular, n ≥ m0. We observe the following
implications:

• If Tx(Ny) = n, then certainly Tx(Syrn−m0(Ny)) = m0.
• Conversely, if Tx(Syrn−m0(Ny)) = m0 and ~a(n0)(Ny) ∈ A(n0), we have Syrn(Ny) ≤
x < Syrn−1(Ny), which by (5.14) forces

n =
log(Ny/x)

log 4
3

+O(log0.6 x),

which by (5.15), (5.2) implies that Tx(Ny) ≥ n−m0, and hence

Tx(Ny) = n−m0 + Tx(Syrn−m0(Ny)) = n.

We conclude that for any n ∈ Iy, the event

(Tx(Ny) = n) ∧ (Passx(Ny) ∈ E) ∧
(
~a(n0)(Ny) ∈ A(n0)

)
holds precisely when the event

Bn,y :=
(
Tx(Syrn−m0(Ny)) = m0

)
∧
(
Passx(Syrn−m0(Ny)) ∈ E

)
∧
(
~a(n0)(Ny) ∈ A(n0)

)
does. From (5.16) we therefore have the estimate

P(Passx(Ny) ∈ E) =
∑
n∈Iy

P(Bn,y) +O(log−c x).

With E ′ the set defined in the proposition, we observe the following implications:

• If Bn,y occurs, then from (5.14), (5.15) we have

Syrn−m0(Ny) = exp(O(log0.6 x))(3/4)Tx(Ny)−m0Ny = exp(O(log0.6 x))(4/3)m0x

and hence (
Syrn−m0(Ny) ∈ E ′

)
∧
(
~a(n0)(Ny) ∈ A(n0)

)
. (5.17)

• Conversely, if (5.17) holds, then from (5.14) we have

Syrn
′
(Ny) = exp(O(log0.6 x))(4/3)n−m0−n′Syrn−m0(Ny) ≥ exp(O(log0.6 x))Syrn−m0(Ny)

for all 0 ≤ n′ ≤ n−m0, and hence by (5.10)

Syrn
′
(Ny) > x

for all 0 ≤ n′ ≤ n−m0. We conclude that

Passx(Ny) = n−m0 + Passx(Syrn−m0(Ny)) = n

thanks to the definition of E ′, and hence also

Tx(Ny) = Tx(Syrn−m0(Ny)) ∈ E.

In particular, the event Bn,y holds.
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We conclude that we have the equality of events

Bn,y =
(
Syrn−m0(Ny) ∈ E ′

)
∧
(
~a(n0)(Ny) ∈ A(n0)

)
for any n ∈ Iy. Since the event ~a(n0)(Ny) ∈ A(n0) is contained in the event ~a(n−m0)(Ny) ∈
A(n−m0), we conclude from (5.12) that

P(Passx(Ny) ∈ E) =
∑
n∈Iy

P
((

Syrn−m0(Ny) ∈ E ′
)
∧
(
~a(n−m0)(Ny) ∈ A(n−m0)

))
+O(log−c x).

Suppose that ~a = (a1, . . . , an−m) is a tuple in A(n−m), and M ∈ E ′. From Lemma
2.1, we see that the event

(
Syrn−m0(Ny) = M

)
∧
(
~a(n−m0)(Ny) = ~a

)
holds if and only if

Aff~a(Ny) ∈ E ′, and the claim (5.8) follows. �

Now we compute the right-hand side of (5.8). Let n ∈ Iy, ~a ∈ A(n−m0), and M ∈ E ′.
Then by (1.3), the event Aff~a(Ny) = M is only non-empty when

M = Fn−m0(~a) mod 3n−m0 (5.18)

Conversely, if (5.18) holds, then Aff~a(Ny) = M holds precisely when

Ny = 2|~a|
M − Fn−m0(~a)

3n−m0
. (5.19)

Note from (5.11), (1.13) that the right-hand side of (5.19) is equal to

22(n−m0)+O(log0.6 x)M +O(3n−m0)

3n−m0

which by (5.10), (5.1) simplifies to

exp(O(log0.7 x))(4/3)nx.

Since n ∈ Iy, we conclude from (5.9) that the right-hand side of (5.19) lies in [y, yα];
from (5.18), (1.5) we also see that this right-hand side is a odd integer. Since Ny ≡
Log(2N + 1 ∩ [y, yα]) and∑

N∈2N+1∩[y,yα]

1

N
=

(
1 +O

(
1

x

))
α− 1

2
log y,

we thus see that when (5.18) occurs, one has

P(Aff~a(Ny) = M) =
1(

1 +O( 1
x
)
)
α−1

2
log y

2−|~a|
3n−m0

M − Fn−m0(~a)
.

From (5.10), (5.1), (1.13) we can write

M − Fn−m0(~a) = M −O(3n0) = (1 +O(x−c))M

and thus

P(Aff~a(Ny) = M) =
1 +O(x−c)
α−1

2
log y

2−|~a|3n−m0

M
.
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We conclude that

P(Passx(Ny) ∈ E) =
1 +O(x−c)
α−1

2
log y

∑
n∈Iy

3n−m0

∑
~a∈A(n−m0)

2−|~a|
∑

M∈E′:M=Fn−m0 (~a) mod 3n−m0

1

M

+O(log−c x).

We will eventually establish the estimate

3n−m0

∑
~a∈A(n−m0)

2−|~a|
∑

M∈E′:M=Fn−m0 (~a) mod 3n−m0

1

M
= Z +O(log−c x) (5.20)

for all n ∈ Iy, where Z is the quantity

Z :=
∑
M∈E′

3m0P(M = Syrac(Z/3m0Z) mod 3m0)

M
. (5.21)

Since from (5.9) we have

#Iy = (1 +O(log−c x))
α− 1

log 4
3

log y,

we see that (5.20) would imply the bound

P(Passx(Ny) ∈ E) = (1 +O(log−c x))
2

log 4
3

Z +O(log−c x)

which would give the desired estimate (5.7) since Z does not depend on whether y is

equal to xα or xα
2
.

It remains to establish (5.20). Fix n ∈ Iy. The left-hand side of (5.20) may be written
as

E1(a1,...,an−m0 )∈A(n−m0)cn(Fn−m0(a1, . . . , an−m0) mod 3n−m0) (5.22)

where (a1, . . . , an−m0) ≡ Geom(2)n−m0 and cn : Z/3n−m0Z→ R+ is the function

cn(X) := 3n−m0

∑
M∈E′:M=X mod 3n−m0

1

M
. (5.23)

We have a basic estimate:

Lemma 5.3. We have cn(X)� 1 for all n ∈ Iy and X ∈ Z/3n−m0Z.

Proof. We can split

cn(X) ≤
∑

(a1,...,am0 )∈Nm0

cn,a1,...,am0
(X)

where

cn,a1,...,am0
(X) := 3n−m0

∑
M∈E′:M=X mod 3n−m0 ;(a1,...,am0 ):=~a(m0)(M)

1

M
.

We now estimate cn,a1,...,am0
(X) for a given (a1, . . . , am0) ∈ Nm0 . If M ∈ E ′, then on

setting (a1, . . . , am0) := ~a(m0)(M) we see from (1.7) that

3m02−a[1,m0]M + Fm0(a1, . . . , am0) ≤ x < 3m02−a[1,m0−1]M + Fm0−1(a1, . . . , am0−1)
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which by (5.2) and (1.13) implies that

3m02−a[1,m0]M ≤ x� 3m02−a[1,m0−1]M

or equivalently
3−m02a[1,m0−1]x�M ≤ 3−m02a[1,m0]x. (5.24)

Also, from (1.7) we also have that

3m0M + 2a[1,m0]Fm0(a1, . . . , am0) = 2a[1,m0] mod 2a[1,m0]+1

and so M is constrained to a single residue class modulo 2a[1,m0]+1. In (5.23) we are also
constraining M to a single residue class modulo 3n−m0 ; by the Chinese remainder theo-
rem, these constraints can be combined into a single residue class modulo 2a[1,m0]+13n−m0 .
Note from the integral test that∑

M0≤M≤M1:M=a mod q

1

M
≤ 1

M0

+
∑

M0+q≤M≤M1:M=a mod q

1

M

≤ 1

M0

+
1

q

∫ M1

M0

dt

t

=
1

M0

+
1

q
log

M1

M0

(5.25)

for any M0 ≤M1 and any residue class a mod q. In particular, for q ≤M0, we have∑
M0≤M≤M1:M=a mod q

1

M
� 1

q
logO

(
M1

M0

)
. (5.26)

If 2a[1,m0] ≤ x0.5 (say), then the modulus 2a[1,m0]+13n−m0 is much less than the lower
bound on M in (5.24), and we can then use the integral test to bound

cn,a1,...,am0
(X)� 3n−m0(2a[1,m0]+13n−m0)−1 logO

(
3−m02a[1,m0]x

3−m02a[1,m0−1]x

)
� 2−a[1,m0]am0

� 2−a[1,m0]/2.

Now suppose instead that 2a[1,m0] > x0.5, we recall from (1.7) that

am0 = ν2

(
3(3m02−a[1,m0−1]M + Fm0−1(a1, . . . , am0−1)) + 1

)
so

2am0 � 3m02−a[1,m0−1]M + Fm0−1(a1, . . . , am0−1)� 3m02−a[1,m0−1]M

(using (1.13), (5.24) to handle the lower order term). Hence we we have the additional
lower bound

M � 3−m02a[1,m0] .

Applying (5.25) with M0 equal to the larger of the two lower bounds on M , we conclude
that

cn,a1,...,am0
(X)� 3n−m0

3−m02a[1,m0]
+ 3n−m0(2a[1,m0]+13n−m0)−1 logO

(
3−m02a[1,m0]x

3−m02a[1,m0−1]x

)
� 3n2−a[1,m0] + 2−a[1,m0]am0

� 2−a[1,m0]/2
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since 2−a[1,m0] ≤ x−1/42−a[1,m0]/2 ≤ 3−n2−a[1,m0]/2 for n ∈ Iy. Thus we have

cn(X)�
∑

a1,...,am0∈N

2−a[1,m0]/2

and the claim follows from summing the geometric series. �

From the above lemma and (5.12), we may write (5.22) as

Ecn(Fn−m0(a1, . . . , an−m0) mod 3n−m0) +O(log−c x)

which by (1.21) is equal to∑
X∈Z/3n−m0Z

cn(X)P(Syrac(Z/3n−m0Z) = X) +O(log−c x).

From (5.9), (5.2) we have n − m0 ≥ m0. Applying Proposition 1.14, Lemma 5.3 and
the triangle inequality, one can thus write the preceding expression as∑

X∈Z/3n−m0Z

cn(X)32m0−nP(Syrac(Z/3m0Z) = X mod 3m0) +O(log−c x)

and the claim (5.20) then follows from (5.23).

6. Reduction to Fourier decay bound

In this section we derive Proposition 1.14 from Proposition 1.17. We first observe that
to prove Proposition 1.14, it suffices to do so in the regime

0.9n ≤ m ≤ n. (6.1)

(The main significance of the constant 0.9 here is that it lies between log 3
2 log 2

≈ 0.7925

and 1.) Indeed, once one has (1.23) in this regime, one also has from (1.22) that∑
Y ∈Z/3n′Z

∣∣∣3n−n′P(Syrac(Z/3nZ) = Y mod 3n)− 3m−n
′P(Syrac(Z/3nZ) = Y mod 3m)

∣∣∣�A m
−A

whenever 0.9n ≤ m ≤ n ≤ n′, and the claim (1.23) for general 10 ≤ m ≤ n then follows
from telescoping series, with the remaining cases 1 ≤ m < 10 following trivially from
the triangle inequality.

Henceforth we assume (6.1). We also fix A > 0, and let CA be a constant that is
sufficiently large depending on A. We may assume that n (and hence m) are sufficiently
large depending on A,CA, since the claim is trivial otherwise.

Let (a1, . . . , an) ≡ Geom(2)n, and define the random variable

Xn := 2−a1 + 312−a[1,2] + · · ·+ 3n−12−a[1,n] mod 3n,

thus Xn ≡ Syrac(Z/3nZ). The strategy will be to split Xn (after some conditioning
and removal of exceptional events) as the sum of two independent components, one of
which has quite large entropy (or more precisely, Renyi 2-entropy) in Z/3nZ thanks to
some elementary number theory, and the other having very small Fourier coefficients at
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high frequencies thanks to Proposition 1.17. The desired bound will then follow from
some L2-based Fourier analysis (i.e., Plancherel’s theorem).

We turn to the details. Let E denote the event that the inequalities

|a[i,j] − 2(j − i)| ≤ CA(
√

(j − i)(log n) + log n) (6.2)

hold for every 1 ≤ i ≤ j ≤ n. The event E occurs with nearly full probability;
indeed, from Lemma 2.2 and the union bound, we can bound the probability of the
complementary event E by

P(E)�
∑

1≤i≤j≤n

Gj−i(cCA(
√

(j − i)(log n) + log n))

�
∑

1≤i≤j≤n

exp(−cCA log n) + exp(−cCA log n)

� n2n−cCA

� n−A−1

(6.3)

if CA is large enough. By the triangle inequality, we may then bound the left-hand side
of (1.23) by

Oscm,n (P((Xn = Y ) ∧ E))Y ∈Z/3nZ +O(n−A−1),

so it now suffices to show that

Oscm,n (P((Xn = Y ) ∧ E))Y ∈Z/3nZ �A,CA n
−A.

Now suppose that E holds. From (6.2) we have

a[1,n] ≥ 2(n− 1)− CA(
√
n log n+ log n) > n

log 3

log 2

since log 3
log 2

< 2 and n is large. Thus, there is a well defined stopping time 0 ≤ k < n,

defined as the unique natural number k for which

a[1,k] ≤ n
log 3

log 2
− (CA)2 log n < a[1,k+1].

From (6.2) we have

k = n
log 3

2 log 2
+O(CA

√
n log n).

It thus suffices by the union bound to show that

Oscm,n (P((Xn = Y ) ∧ E ∧Bk))Y ∈Z/3nZ �A,CA n
−A−1 (6.4)

for all

k = n
log 3

2 log 2
+O(CA

√
n log n), (6.5)

where Bk is the event that k = k, or equivalently that

a[1,k] ≤ n
log 3

log 2
− (CA)2 log n < a[1,k+1]. (6.6)

Fix k. In order to decouple the events involved in (6.4) we need to enlarge the event E
slightly, so that it only depends on a1, . . . , ak+1 and not on ak+2, . . . , an. Let Ek denote
the event that the inequalities (6.2) hold for 1 ≤ i < j ≤ k + 1, thus Ek contains E.
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Then the difference between E and Ek has probability O(n−A−1) by (6.3). Thus by the
triangle inequality, the estimate (6.4) is equivalent to

Oscm,n (P((Xn = Y ) ∧ Ek ∧Bk))Y ∈Z/3nZ �A,CA n
−A−1.

From (6.6) and (6.2) we see that we have

n
log 3

log 2
− (CA)2 log n ≤ a[1,k+1] ≤ n

log 3

log 2
− 1

2
(CA)2 log n. (6.7)

whenever one is in the event Ek∧Bk. By a further application of the triangle inequality,
it suffices to show that

Oscm,n (P((Xn = Y ) ∧ Ek ∧Bk ∧ Ck,l))Y ∈Z/3nZ �A,CA n
−A−2

for all l in the range

n
log 3

log 2
− (CA)2 log n ≤ l ≤ n

log 3

log 2
− 1

2
(CA)2 log n, (6.8)

where Ck,l is the event that a[1,k+1] = l.

Fix l. If we let g = gn,k,l : Z/3nZ→ R denote the function

g(Y ) = gn,k,l(Y ) := P((Xn = Y ) ∧ Ek ∧Bk ∧ Ck,l) (6.9)

then our task can be written as∑
Y ∈Z/3nZ

∣∣∣∣∣∣g(Y )− 1

3n−m

∑
Y ′∈Z/3nZ:Y ′=Y mod 3m

g(Y ′)

∣∣∣∣∣∣�A,CA n
−A−2.

By Cauchy-Schwarz, it suffices to show that

3n
∑

Y ∈Z/3nZ

∣∣∣∣∣∣g(Y )− 1

3n−m

∑
Y ′∈Z/3nZ:Y ′=Y mod 3m

g(Y ′)

∣∣∣∣∣∣
2

�A,CA n
−2A−4. (6.10)

By the Fourier inversion formula, we have

g(Y ) = 3−n
∑

ξ∈Z/3nZ

 ∑
Y ′∈Z/3nZ

g(Y ′)e−2πiξY ′/3n

 e2πiξY/3n

and

1

3n−m

∑
Y ′∈Z/3nZ:Y ′=Y mod 3m

g(Y ′) = 3−n
∑

ξ∈3n−mZ/3nZ

 ∑
Y ′∈Z/3nZ

g(Y ′)e−2πiξY ′/3n

 e2πiξY/3n

for any Y ∈ Z/3nZ, so by Plancherel’s theorem, the left-hand side of (6.10) may be
written as ∑

ξ∈Z/3nZ:ξ 6∈3n−mZ/3nZ

∣∣∣∣∣∣
∑

Y ∈Z/3nZ

g(Y )e−2πiξY/3n

∣∣∣∣∣∣
2

.

By (6.9), we can write∑
Y ∈Z/3nZ

g(Y )e−2πiξY/3n = Ee−2πiξXn/3n1Ek∧Bk∧Ck,l .
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On the event Ck,l, one can use (1.5), (1.26) to write

Xn = Fk+1(ak+1, . . . , a1) + 3k+12−lFn−k−1(an, . . . , ak+2) mod 3n.

The key point here is that the random variable 3k+12−lFn−k−1(an, . . . , ak+2) is indepen-
dent of a1, . . . , ak+1, Ek, Bk, Ck,l. Thus we may factor∑

Y ∈Z/3nZ

g(Y )e−2πiξY/3n = Ee−2πiξ(Fk+1(ak+1,...,a1) mod 3n)/3n1Ek∧Bk∧Ck,l

× Ee−2πiξ(2−lFn−k−1(an,...,ak+2) mod 3n−k−1)/3n−k−1

.

For ξ in Z/3nZ that does not lie in 3n−mZ/3nZ, we can write ξ = 3j2lξ′ mod 3n where
0 ≤ j < n−m ≤ 0.1n and ξ′ is not divisible by 3. In particular, from (6.5) one has

n− k − j − 1 ≥ 0.9n− n log 3

2 log 2
−O(CA

√
n log n)− 1� n.

Then by (1.22) we have

Ee−2πiξ(2−lFn−k−1(an,...,ak+2) mod 3n−k−1)/3n−k−1

= Ee−2πiξ′Syrac(Z/3n−k−j−1Z)/3n−k−j−1

and hence by Proposition 1.17 this quantity is OA′(n
−A′) for any A′. Thus we can bound

the left-hand side of (6.10) by

�A′ n
−2A′

∑
ξ∈Z/3nZ

∣∣∣Ee−2πiξ(Fk+1(ak+1,...,a1) mod 3n)/3n1Ek∧Bk∧Ck,l

∣∣∣2 (6.11)

(where we have now discarded the restriction ξ 6∈ 3n−mZ/3nZ); by Plancherel’s theorem,
this expression can be written as

�A′ n
−2A′3n

∑
Yk+1∈Z/3nZ

P((Fk+1(ak+1, . . . , a1) = Yk+1) ∧ Ek ∧Bk ∧ Ck,l)2.

Remark 6.1. If we ignore the technical restriction to the events Ek, Bk, Ck,l, this quan-
tity is essentially the Renyi 2-entropy (also known as collision entropy) of the random
variable Fk+1(ak+1, . . . , a1) mod 3n.

Now we make a key elementary number theory observation:

Lemma 6.2 (Injectivity of offsets). For each natural number n, the n-Syracuse offset
map Fn : (N + 1)n → Z[1

2
] is injective.

Proof. Suppose that (a1, . . . , an), (a′1, . . . , a
′
n) ∈ (N + 1)n are such that Fn(a1, . . . , an) =

Fn(a′1, . . . , a
′
n). Taking 2-valuations of both sides using (1.5), we conclude that

−a[1,n] = −a′[1,n].

On the other hand, from (1.5) we have

Fn(a1, . . . , an) = 3n2−a[1,n] + Fn−1(a2, . . . , an)

and similarly for a′1, . . . , a
′
n, hence

Fn−1(a2, . . . , an) = Fn−1(a′2, . . . , a
′
n).

The claim now follows from iteration (or an induction on n). �
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We will need a more quantitative 3-adic version of this injectivity:

Corollary 6.3 (3-adic separation of offsets). Let CA be sufficiently large, let n be
sufficiently large (depending on CA), let k be a natural number, and let l be a nat-
ural number obeying (6.8). Then the residue classes Fk+1(ak+1, . . . , a1) mod 3n, as
(a1, . . . , ak+1) ∈ (N + 1)k+1 range over k + 1-tuples of positive integers that obey the
conditions

|a[i+1,j] − 2(j − i)| ≤ CA

(√
(j − i)(log n) + log n

)
(6.12)

for 1 ≤ i < j ≤ k + 1 as well as
a[1,k+1] = l, (6.13)

are distinct.

Proof. Suppose that (a1, . . . , ak+1), (a′1, . . . , a
′
k+1) are two tuples of positive integers that

both obey (6.12), (6.13), and such that

Fk+1(ak+1, . . . , a1) = Fk+1(a′k+1, . . . , a
′
1) mod 3n.

Applying (1.5) and multiplying by 2l, we conclude that

k+1∑
j=1

3j−12l−a[1,j] =
k+1∑
j=1

3j−12l−a
′
[1,j] mod 3n. (6.14)

From (6.13), the expressions on the left and right sides are natural numbers. Using

(6.12), (6.8), and Young’s inequality CAj
1/2 log1/2 n ≤ ε

2
j + 1

2ε
C2
A log n for a sufficiently

small ε > 0, the left-hand side may be bounded for CA large enough by

k+1∑
j=1

3j−12l−a[1,j] � 2l
k+1∑
j=1

3j2−2j+CA(
√
j logn+logn)

� exp(−(CA)2

2
log n)3n

k+1∑
j=1

exp

(
−j log

4

3
+O(CAj

1/2 log1/2 n) +O(CA log n)

)

� exp

(
−(CA)2

4
log n

)
3n

k+1∑
j=1

exp(−cj)

� n−
(CA)2

4 3n;

in particular, for n large enough, this expression is less than 3n. Similarly for the right-
hand side of (6.14). Thus these two sides are equal as natural numbers, not simply as
residue classes modulo 3n:

k+1∑
j=1

3j−12l−a[1,j] =
k+1∑
j=1

3j−12l−a
′
[1,j] . (6.15)

Dividing by 2l, we conclude Fk+1(ak+1, . . . , a1) = Fk+1(a′k+1, . . . , a
′
1). From Lemma 6.2

we conclude that (a1, . . . , ak+1) = (a′1, . . . , a
′
k+1), and the claim follows. �

In view of the above lemma, we see that for a given choice of Yk+1 ∈ Z/3nZ, the event

(Fk+1(ak+1, . . . , a1) = Yk+1) ∧ Ek ∧Bk ∧ Ck,l
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can only be non-empty for at most one value (a1, . . . , am) of the tuple (a1, . . . , am). By
Definition 1.7, such a value is attained with probability 2−a[1,m] = 2−l, which by (6.8)

is equal to nO((CA)2)3−n. We can thus bound (6.11) (and hence the left-hand side of
(6.10)) by

�A′ n
−2A′+O((CA)2),

and the claim now follows by taking A′ large enough. This concludes the proof of
Proposition 1.14 assuming Proposition 1.17.

7. Decay of Fourier coefficients

In this section we establish Proposition 1.17, which when combined with all the impli-
cations established in preceding sections will yield Theorem 1.3.

Let n ≥ 1, let ξ ∈ Z/3nZ be not divisible by 3, and let A > 0 be fixed. We will not
vary n or ξ in this argument, but it is important that all of our estimates are uniform
in these parameters. Without loss of generality we may assume A to be larger than any
fixed absolute constant. We let χ = χn,ξ : Z[1

2
]→ C denote the character

χ(x) := e−2πiξ(x mod 3n)/3n (7.1)

where x 7→ x mod 3n is the ring homomorphism from Z[1
2
] to Z/3nZ (mapping 1

2
to

1
2

mod 3n = 3n+1
2

mod 3n). Note that χ is a group homomorphism from the additive

group Z[1
2
] to the multiplicative group C, which is periodic modulo 3n, so it also descends

to a group homomorphism from Z/3nZ to C, which is still defined by the same formula
(7.1). From (1.26), our task now reduces6 to establishing the following claim.

Proposition 7.1 (Key Fourier decay estimate). Let χ be defined by (7.1), and let
(a1, . . . , an) ≡ Geom(2)n be n iid copies of the geometric distribution Geom(2) (as
defined in Definition 1.7). Then the quantity

Sχ(n) := Eχ(2−a1 + 312−a[1,2] + · · ·+ 3n−12−a[1,n]) (7.2)

obeys the estimate
Sχ(n)�A n

−A (7.3)

for any A > 0, where we use the summation convention a[i,j] := ai + · · ·+aj from (1.6).

7.1. Estimation in terms of white points. To extract some usable cancellation in
the expression Sχ(n), we will group the sum on the left-hand side into pairs. For any
real x > 0, let [x] denote the discrete interval

[x] := {j ∈ N + 1 : j ≤ x} = {1, . . . , bxc}.
For j ∈ [n/2], set bj := a2j−1 + a2j, so that

2−a1 + 312−a[1,2] + · · ·+ 3n−12−a[1,n] =
∑
j∈[n/2]

32j−22−b[1,j](2a2j + 3) + 3n−12−b[1,bn/2c]−an

6Note that we have reversed the order of variables a1, . . . ,an from that in (1.5), as this will be a
slightly more convenient normalization for the arguments in this section.
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when n is odd, where we extend the summation notation (1.6) to the bj. For n even, the
formula is the same except that the final term 3n−12−b[1,bn/2c]−an is omitted. Note that
the b1, . . . ,bbn/2c are jointly independent random variables taking values in N + 2 =
{2, 3, 4, . . . }; they are iid copies of a Pascal (or negative binomial) random variable
Pascal ≡ NB(2, 1

2
) on N + 2, defined by

P(Pascal = b) =
b− 1

2b

for b ∈ N + 2.

For any j ∈ [n/2], a2j is independent of all of the b1, . . . ,bbn/2c except for bj. For n
odd, an is independent of all of the bj. Regardless of whether n is even or odd, once
one conditions on all of the bj to be fixed, the random variables a2j, j ≤ [n/2] (as well
as an, if n is odd) are all independent of each other. We conclude that

Sχ(n) = E

 ∏
j∈[n/2]

f(32j−22−b[1,j] ,bj)

 g(3n−12−b[1,bn/2c])

when n is odd, with the factor g(2−b[1,bn/2c]) omitted when n is even, where f(x, b) is
the conditional expectation

f(x, b) := E (χ(x(2a2 + 3))|a1 + a2 = b) (7.4)

(with (a1, a2) ≡ Geom(2)2) and

g(x) := Eχ(x2−Geom(2)).

Clearly |g(x)| ≤ 1, so by the triangle inequality we can bound

|Sχ(n)| ≤ E
∏

j∈[n/2]

|f(32j−22−b[1,j] ,bj)| (7.5)

regardless of whether n is even or odd.

From (7.4) we certainly have

|f(x, b)| ≤ 1. (7.6)

We now perform an explicit computation to improve upon this estimate for many values
of x (of the form x = 32j−22−l) in the case b = 3, which is the least value of b ∈ N + 2
for which the event a1 + a2 = b does not completely determine a1 or a2. For any
(j, l) ∈ (N + 1)× Z, we can write

χ(32j−22−l+1) = e−2πiθ(j,l) (7.7)

where θ(j, l) = θn,ξ(j, l) ∈ (−1/2, 1/2] denotes the argument

θ(j, l) :=

{
ξ32j−2(2−l+1 mod 3n)

3n

}
(7.8)

and {} : R/Z→ (−1/2, 1/2] is the signed fractional part function, thus {x} denotes the
unique element of the coset x+ Z that lies in (−1/2, 1/2].
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Let 0 < ε < 1
100

be a sufficiently small absolute constant to be chosen later; we will take
care to ensure that the implied constants in many of our asymptotic estimates do not
depend on ε. Call a point (j, l) ∈ [n/2]× Z black 7 if

|θ(j, l)| ≤ ε, (7.9)

and white otherwise. We let B = Bn,ξ,W = Wn,ξ denote the black and white points of
[n/2]× Z respectively, thus we have the partition [n/2]× Z = B ]W .

Lemma 7.2 (Cancellation for white points). If (j, l) is white, then

|f(32j−22−l, 3)| ≤ exp(−ε3).

Proof. If a1, a2 are independent copies of Geom(2), then after conditioning to the event
a1 + a2 = 3, the pair (a1, a2) is equal to either (1, 2) or (2, 1), with each pair occuring
with (conditional) probability 1/2. From (7.4) we thus have

f(x, 3) =
1

2
χ(5x) +

1

2
χ(7x) =

χ(5x)

2
(1 + χ(2x))

for any x, so that

|f(x, 3)| = |1 + χ(2x)|
2

.

We specialise to the case x := 32j−22−l. By (7.7) we have

χ(2x) = e−2πiθ(j,b[1,j])

and hence by elementary trigonometry

|f(32j−22−l, 3)| = cos(πθ(j, l)).

By hypothesis we have
|θ(j, l)| > ε

and the claim now follows by Taylor expansion (if ε is small enough); indeed one can
even obtain an upper bound of exp(−cε2) for some absolute constant c > 0 independent
of ε. �

From the above lemma, (7.6), and the law of total probability, we see that

|Sχ(n)| ≤ E exp(−ε3#{j ∈ [n/2] : bj = 3, (j,b[1,j]) ∈ W}).
As we shall see later, we can interpret the (j,b[1,j]) with bj = 3 as a two-dimensional
renewal process. To establish Proposition 7.1 (and thus Proposition 1.17 and Theorem
1.3), it thus suffices to show the following estimate.

Proposition 7.3 (Renewal process encounters many white points).

E exp(−ε3#{j ∈ [n/2] : bj = 3, (j,b[1,j]) ∈ W})�A n
−A. (7.10)

We remark that this proposition is of a simpler nature to establish than Proposition 7.1
as it is entirely “non-negative”; it does not require the need to capture any cancellation
in an oscillating sum, as was the case in Proposition 7.1.

7This choice of notation was chosen purely in order to be consistent with the color choices in Figures
2, 3, 4.
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Figure 2. A triangle ∆, which we have drawn as a solid region rather
than as a subset of the discrete lattice Z2.

7.2. Deterministic structural analysis of black points. The proof of Proposition
7.3 consists of a “deterministic” part, in which we understand the structure of the white
set W (or the black set B), and a “probabilistic” part, in which we control the random
walk b[1,j] and the events bj = 3. We begin with the former task. Define a triangle to
be a subset ∆ of (N + 1)× Z of the form

∆ = {(j, l) : j ≥ j∆; l ≤ l∆; (j − j∆) log 9 + (l∆ − l) log 2 ≤ s∆} (7.11)

for some (j∆, l∆) ∈ (N+1)×Z (which we call the top left corner of ∆) and some s∆ ≥ 0
(which we call the size of ∆); see Figure 2.

Lemma 7.4 (Structure of black set). The black set B ⊂ [n/2]× Z of points (j, l) with
|θ(j, l)| ≤ ε can be expressed as a disjoint union

B =
⊎

∆∈T

∆

of triangles ∆, each of which is contained in [n
2
− 1

10
log 1

ε
] × Z. Furthermore, any two

triangles ∆,∆′ in T are separated by a distance ≥ 1
10

log 1
ε

(using the Euclidean metric
on [n/2]× Z ⊂ R2). (See Figure 3.)
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Figure 3. The black set is a union of triangles, in the strip [n
2
− 1

10
log 1

ε
]×

Z, that are separated from each other by � log 1
ε
. The red dots depict

(a portion of) a renewal process v1,v[1,2],v[1,3] that we will encounter
later in this section; our main objective will be to establish that this
process usually contains a fair number of white points. We remark that
the average slope 16

4
= 4 of this renewal process will exceed the slope

log 9
log 2
≈ 3.17 of the triangle diagonals, so that the process tends to exit a

given triangle through its horizontal side. The coordinate j increases in
the rightward direction, while the coordinate l increases in the upward
direction.

Proof. We first observe some simple relations between adjacent values of θ. From (7.8)
(or (7.7)) we observe the identity

32(j∗−j)2(l−l∗)θ(j, l) = θ(j∗, l∗) mod Z (7.12)

whenever j ≤ j∗ and l ≥ l∗. Thus for instance

θ(j + 1, l) = 9θ(j, l) mod Z (7.13)

and
θ(j, l − 1) = 2θ(j, l) mod Z. (7.14)

Among other things, this implies that

θ(j, l) = θ(j + 1, l)− 4θ(j, l − 1) mod Z
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and hence by the triangle inequality

|θ(j, l)| ≤ |θ(j + 1, l)|+ 4|θ(j, l − 1)|. (7.15)

These identities have the following consequences. Call a point (j, l) ∈ [n/2]× Z weakly
black if

|θ(j, l)| ≤ 1

100
.

Clearly any black point is weakly black. We have the following further claims.

(i) If (j, l) is weakly black, and either (j + 1, l) or (j, l − 1) is black, then (j, l) is
black. (This follows from (7.13) or (7.14) respectively.)

(ii) If (j + 1, l), (j, l − 1) are weakly black, then (j, l) is also weakly black. (Indeed,
from (7.15) we have |θ(j, l)| ≤ 5

100
, and the claim now follows from (7.13) or

(7.14).)
(iii) If (j−1, l) and (j, l−1) are weakly black, then (j, l) is also weakly black. (Indeed,

from (7.13) we have |θ(j, l)| ≤ 9
100

, and the claim now follows from (7.14).)

Now we begin the proof of the lemma. Suppose (j, l) ∈ [n/2]×Z is black, then by (7.9),
(7.8) we have

ξ32j−2(2−l+1 mod 3n)

3n
∈ [−ε, ε] mod Z

and hence
ξ3n−1(2−l+1 mod 3n)

3n
∈ [−3n+1−2jε, 3n+1−2jε] mod Z.

On the other hand, since ξ is not a multiple of 3, the expression ξ3n−1(2−l+1 mod 3n)
3n

is
either equal to 1/3 or 2/3 mod Z. We conclude that

3n+1−2jε ≥ 1

3
, (7.16)

so the black points in [n/2]× Z actually lie in [n
2
− 1

10
log 1

ε
]× Z.

Suppose that (j, l) ∈ [n/2]× Z is such that (j, l′) is black for all l′ ≥ l, thus

|θ(j, l′)| ≤ ε

for all l′ ≥ l. From (7.14) this implies that

θ(j, l′) = 2θ(j, l′ + 1)

for all l′ ≥ l, hence
θ(j, l′) ≤ 2l−l

′
ε

for all l′ ≥ l. Repeating the proof of (7.16), one concludes that

3n+1−2j2l−l
′
ε ≥ 1

3
,

which is absurd for l′ large enough. Thus it is not possible for (j, l′) to be black for all
l′ ≥ l.

Now let (j, l) ∈ [n/2] × Z be black. By the preceding discussion, there exists a unique
l∗ = l∗(j, l) ≥ l such that (j, l′) is black for all l ≤ l′ ≤ l∗, but such that (j, l∗ + 1) is
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white. Now let j∗ = j∗(j, l) ≤ j be the unique positive integer such that (j′, l∗) is black
for all j∗ ≤ j′ ≤ j, but such that either j∗ = 1 or (j∗− 1, l∗) is white. Informally, (j∗, l∗)
is obtained from (j, l) by first moving upwards as far as one can go in B, then moving
leftwards as far as one can go in B; see Figure 4. As one should expect from glancing at
this figure (or Figure 3), (j∗, l∗) should be the top left corner of the triangle containing
(j, l), and the arguments below are intended to support this claim.

By construction, (j∗, l∗) is black, thus by (7.9) we have

|θ(j∗, l∗)| = ε exp(−s∗) (7.17)

for some s∗ ≥ 0. From (7.12) this implies in particular that

|θ(j′, l′)| ≤ ε exp(−s∗ + (j′ − j∗) log 9 + (l∗ − l′) log 2) (7.18)

whenever j′ ≥ j∗, l
′ ≥ l∗, with equality whenever the right-hand side is strictly less than

1/2.

Let ∆∗ denote the triangle with top left corner (j∗, l∗) and size s∗. If (j′, l′) ∈ ∆∗, then
by (7.18) we have

|θ(j′, l′)| ≤ 32(j′−j∗)2(l∗−l′)ε exp(−s∗) ≤ ε

and hence every element of ∆∗ is black (and thus lies in [n
2
− c log 1

ε
]× Z).

Next, we make the following claim:

(*) Every point (j′, l′) ∈ [n/2]× Z that lies outside of ∆∗, but is at a distance of at
most 1

10
log 1

ε
to ∆∗, is white.

To verify Claim (*), we divide into three cases (see Figure 4):

Case 1: j′ ≥ j∗, l
′ ≤ l∗. In this case we have from (7.11) that

s∗ < (j′ − j∗) log 9 + (l∗ − l′) log 2 ≤ s∗ +
log 9 + log 2

10
log

1

ε

and hence

ε exp(−s∗ + (j′ − j∗) log 9 + (l∗ − l′) log 2)ε1− log 9+log 2
10 <

1

2
.

Applying the equality case of (7.18), we conclude that

θ = ε exp(−s∗ + (j′ − j∗) log 9 + (l∗ − l′) log 2)ε1− log 9+log 2
10 > ε

and thus (j′, l′) is white as claimed.

Case 2: j′ ≥ j∗, l
′ > l∗. In this case we have from (7.11) that

0 < (l′ − l∗) log 2 ≤ log 2

10
log

1

ε
(7.19)

and

(j′ − j∗) log 9 ≤ s∗ +
log 9

10
log

1

ε
(7.20)
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(say). Suppose for contradiction that (j′, l′) was black, thus

|θ(j′, l′)| ≤ ε.

From (7.19) and (7.12) (or (7.14)) this implies that

|θ(j′, l∗ + 1)| ≤ ε1− log 2
10 ,

so in particular (j′, l∗ + 1) is weakly black.

If j′ ≥ j, then from (7.18), (7.20) we also have

|θ(j′ − 1, l∗)| ≤ ε1− log 9
10 , (7.21)

thus (j′ − 1, l∗) is weakly black. Applying claim (ii) and the fact that (j′, l∗ + 1) is
weakly black, we conclude that (j′− 1, l∗ + 1) is weakly black. Iterating this argument,
we conclude that (j′′, l∗+ 1) is weakly black for all j∗ ≤ j′′ ≤ j′. In particular, (j, l∗+ 1)
is weakly black; since (j, l∗) is black by construction of l∗, we conclude from Claim (i)
that (j, l∗ + 1) is black. But this contradicts the construction of l∗.

Now suppose that j′ < j. From construction of l∗, j∗ we see that (j′ + 1, l∗) is black,
hence weakly black; since (j′, l∗ + 1) is weakly black, we conclude from Claim (iii) that
(j′ + 1, l∗ + 1) is weakly black. Iterating this argument we conclude that (j′′, l∗ + 1) is
weakly black for all j′ ≤ j′′ ≤ j, thus in particular (j, l∗ + 1) is weakly black, and we
obtain a contradiction as before.

Case 3: j′ < j∗. Clearly this implies j∗ > 1; also, from (7.11) we have

− log 2

10
log

1

ε
≤ (l∗ − l′) log 2 ≤ s∗ +

log 2

10
log

1

ε
(7.22)

and

0 < (j∗ − j′) log 9 ≤ log 9

10
log

1

ε
. (7.23)

Suppose for contradiction that (j′, l′) was black, thus

|θ(j′, l′)| ≤ ε.

From (7.23) and (7.12) (or (7.13)) we thus have

|θ(j∗ − 1, l′)| ≤ ε1− log 9
10 . (7.24)

If l′ ≥ l∗, then from (7.22), (7.12) we then have

|θ(j∗ − 1, l∗)| ≤ ε1− log 9+log 2
10 ,

so (j∗− 1, l∗) is weakly black. By construction of j∗, (j∗, l∗) is black, hence by Claim (i)
(j∗ − 1, l∗) is black, contradicting the construction of j∗.

Now suppose that l′ < l∗. From (7.24), (j∗ − 1, l′) is weakly black. On the other hand,
from (7.22), (7.18) that

|θ(j∗, l′ + 1)| ≤ ε1− log 2
10

so (j∗, l
′ + 1) is also weakly black. By Claim (ii), this implies that (j∗ − 1, l′ + 1) is

weakly black. Iterating this argument we see that (j∗ − 1, l′′) is weakly black for all
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l′ ≤ l′′ ≤ l∗, hence (j∗ − 1, l∗) is weakly black and we can obtain a contradiction as
before. This concludes the treatment of Case 3 of Claim (*).

We have now verified Claim (*) in all cases. From this claim and the construction (j∗, l∗)
from (j, l), we now see that (j, l) must lie in ∆∗; indeed, if (j, l∗) was outside of ∆∗ then
one of the (necessarily black) points between (j∗, l∗) and (j, l∗) would violate Case 1 of
Claim (*), and similarly if (j, l∗) was in ∆∗ but (j, l) was outside ∆∗ then one of the
(necessarily black points) between (j, l∗) and (j, l) would again violate Case 1 of Claim
(*); see Figure 4. Furthermore, for any (j′, l′) ∈ ∆∗, that l∗(j

′, l′) = l∗ and j∗(j
′, l′) = j∗.

In other words, we have

∆∗ = {(j′, l′) ∈ B : l∗(j
′, l′) = l∗; j∗(j

′, l′) = j∗},

and so the triangles ∆∗ form a partition of B. By the preceding arguments we see that
these triangles lie in [n

2
− 1

10
log 1

ε
] × Z and are separated from each other by at least

1
10

log 1
ε
. This proves the lemma. �

Remark 7.5. One can say a little bit more about the structure of the black set B; for
instance, from Euler’s theorem we see that B is periodic with respect to the vertical
shift (0, 2×3n−1) (cf. Lemma 1.12), and one could use Baker’s theorem [2] that (among
other things) establishes a Diophantine property of log 3

log 2
in order to obtain some further

control on B. However, we will not exploit any further structure of the black set in our
arguments beyond what is provided by Lemma 7.4.

7.3. Formulation in terms of holding time. We now return to the probabilistic
portion of the proof of Proposition 7.3. Currently we have a finite sequence b1, . . . ,bbn/2c
of random variables that are iid copies of the sum a1 + a2 of two independent copies
a1, a2 of Geom(2). We may extend this sequence to an infinite sequence b1,b2,b3, . . .
of iid copies of a1 + a2. Recalling from definition that W is a subset of [n/2] × Z, the
point (j,b[1,j]) can only lie in W when j ∈ [n/2]. Thus the left-hand side of (7.10) can
then be written as

E exp(−ε3#{j ∈ N + 1 : bj = 3, (j,b[1,j]) ∈ W}).

We now describe the random set {(j,b[1,j]) : j ∈ N + 1,bj = 3} as8 a two-dimensional
renewal process (a special case of a renewal-reward process). Since the events bj = 3
are independent and each occur with probability

P(bj = 3) = P(Pascal = 3) =
1

4
> 0, (7.25)

we see that almost surely one has bj = 3 for at least one j ∈ N. Define the two-
dimensional holding time Hold ∈ (N + 1) × (N + 2) to be the random shift (j,b[1,j]),
where j is the least positive integer for which bj = 3; this random variable is almost
surely well defined. Note from (7.25) that the first component j of Hold has the
distribution j ≡ Geom(4). A little thought then reveals that the random set

{(j,b[1,j]) : j ∈ N + 1,bj = 3} (7.26)

8We are indebted to Marek Biskup for this suggestion.
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has the same distribution as the random set

{v1,v[1,2],v[1,3], . . . }, (7.27)

where v1,v2, . . . are iid copies of Hold, and we extend the summation notation (1.6)
to the vj, thus for instance v[1,k] := v1 + · · ·+ vk. In particular, we have

#{j ∈ N + 1 : bj = 3, (j,b[1,j]) ∈ W} ≡ #{k ∈ N + 1 : v[1,k] ∈ W},
and so we can write the left-hand side of (7.10) as

E
∏

k∈N+1

exp(−ε31W (v[1,k])); (7.28)

note that all but finitely many of the terms in this product are equal to 1.

We now pause our analysis of (7.10), (7.28) to record some basic properties about the
distribution of Hold.

Lemma 7.6 (Basic properties of holding time). The random variable Hold has expo-
nential tail (in the sense of (2.3)), is not supported in any coset of any proper subgroup
of Z2, and has mean (4, 16). In particular, the conclusion of Lemma 2.2 holds for Hold
with ~µ = (4, 16).

Proof. From the definition of Hold and (7.25), we see that Hold is equal to (1, 3) with
probability 1/4, and on the remaining event of probability 3/4, it has the distribution
of (1,Pascal′) + Hold′, where Pascal′ is a copy of Pascal that is conditioned to the
event Pascal 6= 3, so that

P(Pascal′ = b) =
4

3

b− 1

2b
(7.29)

for b ∈ N + 2\{3}, and Hold′ is a copy of Hold that is independent of Pascal′. Thus
Hold has the distribution of (1, 3) + (1,b′1) + · · · + (1,b′j−1), where b′1,b

′
2, . . . are iid

copies of Pascal′ and j ≡ Geom(4) is independent of the b′j. In particular, for any

k = (k1, k2) ∈ R2, one has from monotone convergence that

E exp(Hold · k) =
∑
j∈N

1

4

(
3

4

)j−1

exp ((1, 3) · k) (E exp((1,Pascal′) · k))
j
. (7.30)

From (7.29) and dominated convergence, we have E exp((1,Pascal′) · k) < 4
3

for k
sufficiently close to 0, which by (7.30) implies that E exp(Hold·k) <∞ for k sufficiently
close to zero. This gives the exponential tail property by Markov’s inequality.

Since Hold attains the value (1, 3)+(1, b) for any b ∈ N+2\{3} with positive probability,
as well as attaining (1, 3) with positive probability, we see that the support of Hold is
not supported in any coset of any proper subgroup of Z2. Finally, from the description
of Hold at the start of this proof we have

EHold =
1

4
(1, 3) +

3

4
((1,EPascal′) + EHold) ;

also, from the definition of Pascal′ we have

EPascal =
1

4
3 +

3

4
EPascal′.
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We conclude that

EHold = (1,EPascal) +
3

4
EHold;

since EPascal = 2EGeom(2) = 4, we thus have EHold = (4, 16) as required. �

The following lemma allows us to control the distribution of first passage locations of
renewal processes with holding times ≡ Hold, which will be important for us as it lets
us understand how such renewal processes exit a given triangle ∆:

Lemma 7.7 (Distribution of first passage location). Let v1,v2, . . . be iid copies of
Hold, and write vk = (jk, lk). Let s ∈ N, and define the first passage time k to be the
least positive integer such that l[1,k] > s. Then for any j, l ∈ N with l > s, one has

P(v[1,k] = (j, l))� e−c(l−s)

(1 + s)1/2
G1+s

(
c
(
j − s

4

))
,

where G1+s(x) = exp(− |x|
2

1+s
) + exp(−|x|) was the function defined in (2.2).

Informally, this lemma asserts that as a rough first approximation one has

v[1,k] ≈ Unif
({

(j, l) : j =
s

4
+O((1 + s)1/2); s < l ≤ s+O(1)

})
. (7.31)

Proof. Note that by construction of k one has l[1,k]− lk ≤ s, so that lk ≥ l[1,k]−s. From
the union bound, we therefore have

P(v[1,k] = (j, l)) ≤
∑
k∈N+1

P((v[1,k] = (j, l)) ∧ (lk ≥ l − s));

since vk has the exponential tail and is independent of v1, . . . ,vk−1, we thus have

P(v[1,k] = (j, l))�
∑
k∈N+1

∑
lk≥l−s

∑
jk∈N+1

e−c(jk+lk)P(v[1,k−1] = (j − jk, l − lk)).

Writing lk = l − s+ l′k, we then have

P(v[1,k] = (j, l))� e−c(l−s)
∑
k∈N+1

∑
l′k∈N

∑
jk∈N+1

e−c(jk+l′k)P(v[1,k−1] = (j − jk, s− l′k)).
We can restrict to the region l′k ≤ s, since the summand vanishes otherwise. It now
suffices to show that∑

k∈N+1

∑
0≤l′k≤s

∑
jk∈N+1

e−c(jk+l′k)P
(
v[1,k−1] = (j − jk, s− l′k)

)
� (1 + s)−1/2G1+s

(
c(j − s

4
)
)
.

(7.32)

This is in turn implied by∑
k∈N+1

∑
0≤l′k≤s

e−cl
′
kP(v[1,k−1] = (j′, s− l′k))

� (1 + s)−1/2G1+s

(
c(j′ − s

4
)
) (7.33)
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for all j′ ∈ Z, since (7.32) then follows by replacing j′ by j−jk, multiplying by exp(−cjk),
and summing in jk (and adjusting the constants c appropriately). In a similar vein, it
suffices to show that∑

k∈N+1

P(v[1,k−1] = (j′, s′))� (1 + s′)−1/2G1+s′

(
c(j′ − s′

4
)

)
for all s′ ∈ N, since (7.33) follows after setting s′ = s − l′k, multiplying by exp(−cl′k),
and summing in l′k (splitting into the regions l′k ≤ s/2 and l′k > s/2 if desired to simplify
the calculations).

From Lemma 7.6 and Lemma 2.2 one has

P(v[1,k−1] = (j′, s′))� k−1Gk−1 (c((j′, s′)− (k − 1)(4, 16))) ,

and the claim now follows from summing in k and a routine calculation (splitting for
instance into the regions 16(k−1) ∈ [s′/2, 2s′], 16(k−1) < s′/2, and 16(k−1) > 2s′). �

7.4. Recursively controlling a maximal expression. We return to the study of the
left-hand side of (7.10), which we have expressed as (7.28). For any (j, l) ∈ N + 1× Z,
let Q(j, l) denote the quantity

Q(j, l) := E
∏
k∈N

exp(−ε31W ((j, l) + v[1,k])) (7.34)

then we have the recursive formula

Q(j, l) = exp(−ε31W (j, l))EQ((j, l) + Hold). (7.35)

Observe that for each (j, l) ∈ N + 1× Z, we have the conditional expectation

E

( ∏
k∈N+1

exp(−ε31W (v[1,k]))|v1 = (j, l)

)
= Q(j, l)

since after conditioning on v1 = (j, l) then the v[1,k] have the same distribution as
(j, l) + v′[1,k−1] where v′1,v

′
2, . . . is another sequence of iid copies of Hold. Since v1 has

the distribution of Hold, we conclude from the law of total probability that

E
∏

k∈N+1

exp(−ε31W (v[1,k])) = EQ(Hold).

From (7.28) we thus see that we can rewrite the desired estimate (7.10) as

EQ(Hold)�A n
−A. (7.36)

One can think of Q(j, l) as a quantity controlling how often one encounters white points
when one walks along a two-dimensional renewal process (j, l), (j, l)+v1, (j, l)+v[1,2], . . .
starting at (j, l) with holding times given by iid copies of Hold. The smaller this
quantity is, the more white points one is likely to encounter. The main difficulty is thus
to ensure that this renewal process is usually not trapped within the black triangles ∆
from Lemma 7.4; as it turns out (and as may be evident from an inspection of Figure
3), the large triangles will be the most troublesome to handle (as they are so large
compared to the narrow band of white points surrounding them that are provided by
Lemma 7.4).
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Suppose that we can prove a bound of the form

Q(j, l)�A max(bn/2c − j, 1)−A (7.37)

for all (j, l) ∈ (N+1)×Z; this is trivial for j ≥ n/2 but becomes increasingly non-trivial
for smaller values of j. Then

Q(Hold)�A max(bn/2c − j, 1)−A �A n
−AjA

where j ≡ Geom(4) is the first component of Hold. As Geom(4) has exponential tail,
we conclude (7.36) and hence Proposition 7.3, which then implies Propositions 7.1, 1.17
and Theorem 1.3.

It remains to prove (7.37). Roughly speaking, we will accomplish this by a downwards
induction on j, or more precisely, by an upwards induction on a quantity m, which is
morally equivalent to bn/2c−j. To make this more precise, it is convenient to introduce
the quantities Qm for any m ∈ [n/2] by the formula

Qm := sup
(j,l)∈(N+1)×Z:j≥bn/2c−m

max(bn/2c − j, 1)AQ(j, l). (7.38)

Clearly we have

Qm ≤ mA, (7.39)

since Q(j, l) ≤ 1 for all j, l; this bound can be thought of as supplying the “base case”
for our induction). We trivially have Qm ≥ Qm−1 for any 1 ≤ m ≤ n/2. We will shortly
establish the opposite inequality:

Proposition 7.8 (Monotonicity). We have

Qm ≤ Qm−1 (7.40)

whenever CA,ε ≤ m ≤ n/2 for some sufficiently large CA,ε depending on A, ε.

Assuming Proposition 7.8, we conclude from (7.39) and a (forwards) induction on m
that Qm ≤ CA

A,ε �A 1 for all 1 ≤ m ≤ n/2, which gives (7.37). This in turn implies
Proposition 7.3, and hence Proposition 7.1, Proposition 1.17, and Theorem 1.3.

It remains to establish Proposition (7.8). Let CA,ε ≤ m ≤ n/2 for some sufficiently
large CA,ε. It suffices to show that

Q(j, l) ≤ m−AQm−1 (7.41)

whenever j = bn/2c − m and l ∈ Z. Note from (7.38) that we immediately obtain
Q(j, l) ≤ m−AQm, but to be able to use Qm−1 instead of Qm we will apply (7.35) at
least once, in order to estimate Q(j, l) in terms of other values Q(j′, l′) of Q with j′ > j.
This causes a degradation in the m−A term, even when m is large; to overcome this
loss we need to ensure that (with high probability) the two-dimensional renewal process
visits a sufficient number of white points before we use Qm−1 to bound the resulting
expression. This is of course consistent with the interpretation of (7.10) as an assertion
that the renewal process encounters plenty of white points.

We divide the proof of (7.41) into three cases. Let T be the family of triangles from
Lemma 7.4.
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Case 1: (j, l) ∈ W . This is the easiest case, as one can immediately get a gain from
the white point (j, l). From (7.35) we have

Q(j, l) = exp(−ε3)EQ((j, l) + Hold).

For any (j′, l′) ∈ (N + 1)× Z, we have from (7.38) (applied with m replaced by m− 1)
that

Q((j, l) + (j′, l′)) ≤ max(bn/2c − j − j′, 1)−AQm−1 = max(m− j′, 1)−AQm−1

since j + j′ ≥ j + 1 = bn/2c − (m − 1). Replacing (j′, l′) by Hold (so that j′ has the
distribution of Geom(4)) and taking expectations, we conclude that

Q(j, l) ≤ exp(−ε3)Qm−1Emax(m−Geom(4), 1)−A.

We can bound

max(m− r, 1)−1 ≤ m−1 exp

(
O

(
r logm

m

))
(7.42)

for any r ∈ N + 1; indeed this bound is trivial for r ≥ m, and for r < m one can use
the concave nature of x 7→ log(1− x) for 0 < x < 1 to conclude that

log
(
1− r

m

)
r/m

≥
log
(
1− m−1

m

)
(m− 1)/m

which rearranges to give the stated bound. Replacing r by Geom(4) and raising to the
Ath power, we obtain

Q(j, l) ≤ exp(−ε3)m−AQm−1E exp

(
O

(
A logm

m
Geom(4)

))
.

For m large enough depending on A, ε, we then have

Q(j, l) ≤ exp(−ε3/2)m−AQm−1 (7.43)

which gives (7.41) in this case (with some room to spare).

Case 2: (j, l) ∈ ∆ for some triangle ∆ ∈ T , and l ≥ l∆− m
log2 m

. This case is slightly

harder than the preceding one, as one has to walk randomly through the triangle ∆
before one has a good chance to encounter a white point, but because this portion of
the walk is relatively short, the degradation of the weight m−A during this portion will
be negligible.

We turn to the details. Set s := l∆ − l, thus 0 ≤ s ≤ m
log2 m

. Let v1,v2, . . . be iid copies

of Hold, write vk = (jk, lk) for each k with the usual summation notations (1.6), and
define the first passage time k ∈ N + 1 to be the least positive integer such that

l[1,k] > s. (7.44)

This is a finite random variable since the lk are all positive integers. Heuristially, k
represents the time in which the sequence first exits the triangle ∆, assuming that this
exit occurs on the top edge of the triangle. It is in principle possible for the sequence to
instead exit ∆ through the hypotenuse of the triangle, in which case k will be somewhat
larger than the first exit time; however, as we shall see below, the Chernoff bound in
Lemma 7.7 can be used to show that the former scenario will occur with probability
� 1, which will be sufficient for the purposes of establishing (7.41) in this case.
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By iterating (7.35) appropriately (or using (7.34)), we have the identity

Q(j, l) = E

[
exp

(
−ε3

k−1∑
i=0

1W ((j, l) + v[1,i])

)
Q((j, l) + v[1,k])

]
(7.45)

and hence by (7.38)

Q(j, l) ≤ Qm−1E
[
exp

(
−ε

3

2
1W ((j, l) + v[1,k])

)
max(m− j[1,k], 1)−A

]
which by (7.42) gives

Q(j, l) ≤ m−AQm−1E exp

(
−ε

3

2
1W ((j, l) + v[1,k])

)
exp

(
O

(
A logm

m
j[1,k]

))
.

To prove (7.41) in this case, it thus suffices to show that

E exp

(
−ε

3

2
1W ((j, l) + v[1,k])

)
exp

(
O

(
A logm

m
j[1,k]

))
≤ 1. (7.46)

Since exp(−ε3/2) ≤ 1− ε3/4, we can upper bound the left-hand side by

E exp

(
O

(
A logm

m
j[1,k]

))
− ε3

4
P((j, l) + v[1,k] ∈ W ). (7.47)

We begin by controlling the first term on the right-hand side of (7.47). By definition, the
first passage location (j, l)+v[1,k] takes values in the region {(j′, l′) ∈ Z2 : j′ > j, l′ > l∆}.
From Lemma 7.7 we have

P((j, l) + v[1,k] = (j′, l′))� e−c(l
′−l∆)

(1 + s)1/2
G1+s

(
c(j′ − j − s

4
)
)
. (7.48)

Summing in l′, we conclude that

P(j[1,k] = j′ − j)� (1 + s)−1/2G1+s

(
c(j′ − j − s

4
)
)

for any j′; informally, j[1,k] is behaving like a Gaussian random variable centred at s/4

with standard deviation � (1+s)1/2. In particular, because of the hypothesis s ≤ m
log2 m

,

we have

P(j[1,k] = r)� exp(−|r|)
when r > m

log2 m
(say). With our hypotheses s ≤ m

log2 m
and m ≥ CA,ε, the quantity

A logm
m

is much smaller than 1, and by using the above bound to control the contribution
when j[1,k] >

m
log2 m

we have

E exp

(
O

(
A logm

m
j[1,k]

))
≤ E exp

(
O

(
A logm

m

m

log2m

))
+O

(
exp

(
−c m

log2m

))
= 1 +O

(
A

logm

)
.

(7.49)
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Now we turn attention to the second term on the right-hand side of (7.47). Using (7.48)
to handle all points (j′, l′) outside the region l′ = l∆ +O(1) and j′ = j+ s

4
+O((1+s)1/2),

we have

P
(

(j, l) + v[1,k] =
(
j +

s

4
+O((1 + s)1/2), l∆ +O(1)

))
� 1 (7.50)

for a suitable choice of implied constants in the O-notation that is independent of ε (cf.
(7.31)). On the other hand, since (j, l) ∈ ∆ and s = l∆ − l, we have from (7.11) that

0 ≤ (j − j∆) log 9 ≤ s∆ − s log 2

and thus (since 0 < 1
4

log 9 < log 2) one has

−O(1) ≤ (j′ − j∆) log 9 ≤ s∆ +O(1)

whenever j′ = j + s
4

+ O((1 + s)1/2), with the implied constants independent of ε. We
conclude that with probability � 1, the first passage location (j, l) + v[1,k] lies outside
of ∆, but at a distance O(1) from ∆, hence is white by Lemma 7.4. We conclude that

P((j, l) + v[1,k] ∈ W )� 1 (7.51)

and (7.41) (and hence (7.46)) now follows from (7.47), (7.49), (7.51) since m ≥ CA,ε.

Case 3: (j, l) ∈ ∆ for some triangle ∆ ∈ T , and l < l∆ − m
log2 m

. This is the most

difficult case, as one has to walk so far before exiting ∆ that one needs to encounter
multiple white points, not just a single white point, in order to counteract the degrada-
tion of the weight m−A. Fortunately, the number of white points one needs to encounter
is OA,ε(1), and we will be able to locate such a number of white points on average for
m large enough.

We will need a large constant P (much larger than A or 1/ε, but much smaller than m)
depending on A, ε to be chosen later; the implied constants in the asymptotic notation
below will not depend on P unless otherwise specified. As before, we set s := l∆ − l, so
now s > m

log2 m
. From (7.11) we have

(j − j∆) log 9 + s log 2 ≤ s∆

while from Lemma 7.4 one has j∆ + s∆
log 9
≤ bn

2
c ≤ j +m, hence

s ≤ log 9

log 2
m. (7.52)

We again let v1,v2, . . . be iid copies of Hold, write vk = (jk, lk) for each k, and define
the first passage time k ∈ N + 1 to be the least positive integer such that (7.44) holds.
From (7.45) we have

Q(j, l) ≤ EQ((j, l) + v[1,k]).

Applying (7.35) we then have

Q(j, l) ≤ E exp

(
−ε3

P−1∑
p=0

1W ((j, l) + v[1,k+p])

)
Q((j, l) + v[1,k+P ]). (7.53)

Applying (7.38) to Q((j, l) + v[1,k+P ]) = Q(j + j[1,k+P ], l + l[1,k+P ]), we have

max(bn/2c − j − j[1,k+P ], 1)AQ((j, l) + v[1,k+P ]) ≤ Qm−1
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(since j + j[1,k+P ] ≥ j + 1 ≥ bn/2c − (m− 1)). We can rearrange this inequality as

Q((j, l) + v[1,k+P ]) ≤ m−AQm−1 max

(
1−

j[1,k+P ]

m
,

1

m

)−A
;

inserting this back into (7.53), we conclude that

Q(j, l) ≤ m−AQm−1E exp

(
−ε3

P−1∑
p=0

1W ((j, l) + v[1,k+p])

)
max

(
1−

j[1,k+P ]

m
,

1

m

)−A
.

Thus, to establish (7.41) in this case, it suffices to show that

E exp

(
−ε3

P−1∑
p=0

1W ((j, l) + v[1,k+p])

)
max

(
1−

j[1,k+P ]

m
,

1

m

)−A
≤ 1. (7.54)

Let us first consider the event that j[1,k+P ] ≥ 0.9m. From Lemma 7.7 and the bound
(7.52), we have

P(j[1,k] ≥ 0.8m)� exp(−cm)

(noting that 0.8 > 1
4

log 9
log 2

) while from Lemma 2.2 (recalling that the jk are iid copies of

Geom(4)) we have

P(j[k+1,k+P ] ≥ 0.1m)�P exp(−cm)

and thus by the triangle inequality

P(j[1,k+P ] ≥ 0.9m)�P exp(−cm).

Thus the contribution of this case to (7.54) isOP,A(mA exp(−cm)) = OP,A(exp(−cm/2)).
If instead we have j[1,k+P ] < 0.9m, then

max

(
1−

j[1,k+P ]

m
,

1

m

)−A
≤ 10A.

Since m is large compared to A,P , to show (7.54) it thus suffices to show that

E exp

(
−ε3

P−1∑
p=0

1W ((j, l) + v[1,k+p])

)
≤ 10−A−1. (7.55)

Since the left-hand side of (7.55) is at most

P

(
P−1∑
p=0

1W ((j, l) + v[1,k+p]) ≤
10A

ε3

)
+ exp(−10A),

it will suffice to establish the bound

P

(
P−1∑
p=0

1W ((j, l) + v[1,k+p]) ≤
10A

ε3

)
≤ 10−A−2 (7.56)

(say).

Roughly speaking, the estimate (7.56) asserts that once one exits the large triangle ∆
then one should almost always encounter at least 10A/ε3 white points by a certain time
P = OA,ε(1).
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To prove (7.56), we introduce another random statistic that measures the number of tri-
angles that one encounters on an infinite two-dimensional renewal process (j′, l′), (j′, l′)+
v1, (j

′, l′) + v[1,2], . . . , where (j′, l′) ∈ (N + 1)×Z and v1,v2, . . . are iid copies of Hold.
(We will eventually set (j′, l′) := (j, l) + v[1,k], so that the above renewal process is
identical in distribution to (j, l) + v[1,k], (j, l) + v[1,k+1], (j, l) + v[1,k+2], . . . .)

Given an initial point (j′, l′) ∈ (N+ 1)×Z, we recursively introduce the stopping times
t1 = t1(j′, l′), . . . , tr = tr(j′,l′)(j, l) by defining t1 to be the first natural number (if it
exists) for which (j′, l′)+v[1,t1] lies in a triangle ∆1 ∈ T , then for each i > 1, defining ti
to be the first natural number (if it exists) with l′+ l[1,ti] > l∆i−1

and (j′, l′) + v[1,ti] lies
in a triangle ∆i ∈ T . We set r = r(j′, l′) to be the number of stopping times that can
be constructed in this fashion (thus, there are no natural numbers k with l+ l[1,k] > l∆r

and (j′, l′) + v[1,k] black). Note that r is finite since the process (j′, l′) + v[1,k] eventually
exits the strip [n/2]×Z when k is large enough, at which point it no longer encounters
any black triangles.

The key estimate relating r with the expression in (7.56) is then

Lemma 7.9 (Many triangles usually implies many white points). Let v1,v2, . . . be iid
copies of Hold. Then for any (j′, l′) ∈ (N+ 1)×Z and any positive integer R, we have

E exp

− tmin(r,R)∑
p=1

1W ((j′, l′) + v[1,p]) + εmin(r, R)

 ≤ exp(ε), (7.57)

where 0 < ε < 1/100 is the sufficiently small absolute constant that has been in use
throughout this section.

Informally the estimate (7.57) asserts that when r is large (so that the renewal process
(j′, l′), (j′, l′) + v1, (j

′, l′) + v[1,2], . . . passes through many different triangles), then the

quantity
∑tmin(r,R)

p=1 1W ((j′, l′)+v[1,p] is usually also large, implying that the same renewal
process also visits many white points. This is basically due to the separation between
triangles that is given by Lemma 7.4.

Proof. Denote the quantity on the left-hand side of (7.57) by Z((j′, l′), R). We induct
on R. The case R = 1 is trivial, so suppose R ≥ 2 and that we have already established
that

Z((j′′, l′′), R− 1) ≤ exp(ε) (7.58)

for all (j′′, l′′) ∈ (N + 1)× Z. If r = 0 then we can bound

exp

− tmin(r,R)∑
p=1

1W ((j′, l′) + v[1,p]) + εmin(r, R)

 ≤ 1.

Suppose that r 6= 0, so that the first stopping time t1 and triangle ∆1 exists. Let k1

be the first natural number for which l′ + l[1,k1] > l∆1 ; then k1 is well-defined (since we
have an infinite number of lk, all of which are at least 2) and k1 > t1. The conditional
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expectation of exp(−
∑tmin(r,R)

p=1 1W ((j′, l′) + v[1,p]) + εmin(r, R)) relative to the random
variables v1, . . . ,vk1 is equal to

exp

(
−

k1∑
p=1

1W ((j′, l′) + v[1,p]) + ε

)
Z(1W ((j′, l′) + v[1,k1], R− 1)

which we can upper bound using the inductive hypothesis (7.58) as

exp
(
−1W ((j′, l′) + v[1,k1]) + 2ε

)
.

We thus obtain the inequality

Z((j′, l′), R) ≤ P(r = 0) + exp(2ε)E1r6=0 exp(−1W ((j′, l′) + v[1,k1]))

so to close the induction it suffices to show that

E1r6=0 exp(−1W ((j′, l′) + v[1,k1])) ≤ exp(−ε)P(r 6= 0).

Since the left-hand side is equal to

P(r 6= 0)− (1− 1/e)P((r 6= 0) ∧ ((j′, l′) + v[1,k1] ∈ W ))

and ε > 0 is a sufficiently small absolute constant, it will thus suffice to establish the
bound

P((r 6= 0) ∧ ((j′, l′) + v[1,k1] ∈ W ))� P(r 6= 0).

For each p ∈ N + 1, triangle ∆1 ∈ T , and (j′′, l′′) ∈ ∆1, let Ep,∆1,(j′′,l′′) denote the event
that (j′, l′) + v[1,p] = (j′′, l′′), and (j′, l′) + v[1,p′] ∈ W for all 1 ≤ p′ < p. Observe that
the event r 6= 0 is the disjoint union of the events Ep,∆1,(j′′,l′′). It therefore suffices to
show that

P
(
Ep,∆1,(j′′,l′′) ∧ ((j′, l′) + v[1,k1] ∈ W )

)
� P(Ep,∆1,(j′′,l′′)). (7.59)

We may of course assume that the event Ep,∆1,(j′′,l′′) occurs with non-zero probability.
Conditioning to this event, we see that (j′, l′) + v[1,k1] has the same distribution as (the
unconditioned random variable) (j′′, l′′) + v[1,k′′], where the first passage time k′′ is the
first natural number for which l′′ + l[1,k′′] > l∆1 . By repeating the proof of (7.51), one
has

P((j′′, l′′) + v[1,k′′] ∈ W |Ep,∆1,(j′′,l′′))� 1

giving (7.59). This establishes the lemma. �

To use this bound we need to show that the renewal process (j, l) + v[1,k], (j, l) +
v[1,k + 1], (j, l) + v[1,k+2], . . . either passes through many white points, or through
many triangles. This will be established via a probabilistic upper bound on the size s∆

of the triangles encountered. The key lemma in this regard is

Lemma 7.10 (Large triangles are rarely encountered shortly after a lengthy crossing).
Let (j, l) be an element of a black triangle ∆ with s := l∆ − l obeying s > m

log2m
(where

we recall m = bn/2c − j), and let k be the first passage time associated to s defined in
Lemma 7.7. Let p ∈ N and 1 ≤ s′ ≤ m0.4. Let Ep,s′ denote the event that (j, l) + v[1,k+p]

lies in a triangle ∆′ ∈ T of size s∆′ ≥ s′. Then

P(Ep,s′)� A2 1 + p

s′
+ exp(−cA2(1 + p)).
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As in the rest of this section, we stress that the implied constants in our asymptotic
notation are uniform in n and ξ.

Proof. We can assume that

s′ ≥ CA2(1 + p) (7.60)

for a large constant C, since the claim is trivial otherwise.

From Lemma 7.7 we have (7.48) as before, so on summing in j′ we have

P(l + l[1,k] = l′)� exp(−c(l′ − l∆))

and thus

P(l + l[1,k] ≥ l∆ + A2(1 + p))� exp(−cA2(1 + p)).

Similarly, from Lemma 2.2 one has

P(l[k+1,k+p] ≥ A2(1 + p))� exp(−cA2(1 + p))

and thus

P(l + l[1,k+p] ≥ l∆ + 2A2(1 + p))� exp(−cA2(1 + p)).

In a similar spirit, from (7.48) and summing in l′ one has

P(j + j[1,k] = j′)� s−1/2G1+s

(
c(j′ − j − s

4
)
)

so in particular

P
(∣∣∣j[1,k] −

s

4

∣∣∣ ≥ s0.6
)
� exp(−cs0.2)� A2 1 + p

s′

from the upper bound on s′. From Lemma 2.2 we also have

P(|j[k+1,k+p]| ≥ s0.6)� exp(−cs0.6)� A2 1 + p

s′

and hence

P
(∣∣∣j[1,k+p] −

s

4

∣∣∣ ≥ 2s0.6
)
� A2 1 + p

s′

Thus, if E ′ denotes the event that l + l[1,k+p] ≥ l∆ + 2A2(1 + p) or |j[1,k+p] − s
4
| ≥ 2s0.6,

then

P(E ′)� A2 1 + p

s′
+ exp(−cA2(1 + p)). (7.61)

We will devote the rest of the proof to establishing the complementary estimate

P(Ep,s′ ∧ Ē ′)� A2 1 + p

s′
(7.62)

which together with (7.61) implies the lemma.

Suppose now that we are outside the event E ′, and that (j, l) + v[1,k+p] lies in a triangle
∆′, thus

l + l[1,k+p] = l∆ +O(A2(1 + p)) (7.63)

and

j[1,k+p] =
s

4
+O(s0.6) =

s

4
+O(m0.6) (7.64)
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thanks to (7.52). From (7.11) we then have

0 ≤ j + j[1,k+p] − j∆′ ≤
1

log 9
s∆′ −

log 2

log 9
(l∆′ − l − l[1,k+p]).

Suppose that the lower tip of ∆′ lies well below the upper edge of ∆ in the sense that

l∆′ −
s∆′

log 2
≤ l∆ − 10.

Then by (7.63) we can find an integer j′ = j + j[1,k+p] +O(A2(1 + p)) such that j′ ≥ j∆′

and

0 ≤ j′ − j∆′ ≤
1

log 9
s∆′ −

log 2

log 9
(l∆′ − l∆).

In other words, (j′, l∆) ∈ ∆′. But by (7.64) we have

j′ = j +
s

4
+O(m0.6) +O(A2(1 + p)) = j +

s

4
+O(m0.6).

From (7.11) we have
0 ≤ (j − j∆) log 9 ≤ s∆ − s log 2

and hence (since s ≥ m
log2m

and 1
4

log 9 < log 2)

0 ≤ (j′ − j∆) log 9 ≤ s∆

Thus (j′, l∆) ∈ ∆. Thus ∆ and ∆′ intersect, which by Lemma 7.4 forces ∆ = ∆′, which
is absurd since (j, l) + v[1,k+p] lies in ∆′ but not ∆ (the l coordinate is larger than l∆).
We conclude that

l∆′ −
s∆′

log 2
> l∆ − 10.

On the other hand, from (7.11) we have

l∆′ −
s∆′

log 2
≤ l + l[1,k+p]

hence by (7.63) we have

l∆′ −
s∆′

log 2
= l∆ +O(A2(1 + p)). (7.65)

From (7.11), (7.63) we then have

0 ≤ j + j[1,k+p] − j∆′ ≤
1

log 9
s∆′ −

log 2

log 9
(l∆′ − l − l[1,k+p])

= O(A2(1 + p)).

so that
j + j[1,k+p] = j∆′ +O(A2(1 + p)).

Thus, outside the event E ′, the event that (j, l) + v[1,k+p] lies in a triangle ∆′ can only
occur if (j, l) + v[1,k+p] lies within a distance O(A2(1 + p)) of the point (j∆′ , l∆).

Now suppose we have two distinct triangles ∆′,∆′′ in T obeying (7.65), with s∆′ , s∆′′ ≥
s′ with j∆′ ≤ j∆′′ . Set l∗ := l∆ + bs′/2c, and observe from (7.11) that (j∗, l∗) ∈ ∆′

whenever j∗ lies in the interval

j∆′ ≤ j∗ ≤ j∆′ +
1

log 9
s∆′ −

log 2

log 9
(l∆′ − l∗)
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and similarly (j∗, l∗) ∈ ∆′′ whenever

j∆′′ ≤ j∗ ≤ j∆′′ +
1

log 9
s∆′′ −

log 2

log 9
(l∆′′ − l∗).

By Lemma 7.4, these two intervals cannot have any integer point in common, thus

j∆′ +
1

log 9
s∆′ −

log 2

log 9
(l∆′ − l∗) ≤ j∆′′ .

Applying (7.65) and the definition of l∗, we conclude that

j∆′ +
1

2

log 2

log 9
s′ +O(A2(1 + p)) ≤ j∆′′

and hence by (7.60)

j∆′′ − j∆′ � s′.

We conclude that for the triangles ∆′ in T obeying (7.65) with s∆′ ≥ s′, the points
(j∆′ , l∆) are � s′-separated. Let Σ denote the collection of such points, thus Σ is a
� s′-separated set of points, and outside of the event E ′, (j, l) + v[1,k+p] can only occur
in a triangle ∆′ with s∆′ ≥ s′ if

dist((j, l) + v[1,k+p],Σ)� A2(1 + p).

We conclude that

P(Ep,s′ ∧ Ē ′)� P
(
dist((j, l) + v[1,k+p],Σ)� A2(1 + p)

)
.

From (7.48) we see that

P
(
(j, l) + v[1,k+p] = (j∆′ , l∆) +O(A2(1 + p))

)
� A2(1 + p)

s1/2
G1+s

(
c(j∆′ − j −

s

4
)
)

� A2(1 + p)

s′

∑
j′=j∆′+O(s′)

1

s1/2
G1+s

(
c(j′ − j − s

4
)
)
.

Summing and using the � s′-separated nature of Σ, we conclude that

P
(
dist((j, l) + v[1,k+p],Σ)� A2(1 + p)

)
� A2(1 + p)

s′

∑
j′∈Z

1

s1/2
G1+s

(
c(j′ − j − s

4
)
)

� A2(1 + p)

s′

and the claim (7.62) follows. �

From Lemma 7.10 we have

P(Ep,4A(1+p)3)� A2 1

4A(1 + p)2
+ exp(−cA2(1 + p))

whenever 0 ≤ p ≤ m0.1. Thus by the union bound, if E∗ denotes the union of the
Ep,4A(1+p)3 for 0 ≤ p ≤ m0.1, then

P(E∗)� A24−A.
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Next, we apply Lemma 7.9 with (j′, l′) := (j, l) + v[1,k] to conclude that

E exp

− tmin(r,R)∑
p=1

1W ((j, l) + v[1,k+p] + εmin(r, R)

 ≤ exp(ε),

where now r = r((j, l) + v[1,k]) and ti = ti((j, l) + v[1,k]). By Markov’s inequality we
thus see that outside of an event F∗ of probability

P(F∗) ≤ 10−A−2,

one has

exp

− tmin(r,R)∑
p=1

1W ((j, l) + v[1,k+p] + εmin(r, R)

� 10A

which implies that
tmin(r,R)∑
p=1

1W ((j, l) + v[1,k+p])� εmin(r, R)−O(A).

In particular, if we set R := bA2/ε4c, we have

tR∑
p=1

1W ((j, l) + v[1,k+p])�
A2

ε3
(7.66)

whenever we lie outside of F∗ and r ≥ R.

Now suppose we lie outside of both E∗ and F∗. To prove (7.56), it will now suffice to
show the deterministic claim

P−1∑
p=0

1W ((j, l) + v[1,k+p]) >
10A

ε3
. (7.67)

Suppose this is not the case, thus

P−1∑
p=0

1W ((j, l) + v[1,k+p]) ≤
10A

ε3
.

Thus the point (j, l) + v[1,k+p] is white for at most 10A/ε3 values of 0 ≤ p ≤ P − 1,
so in particular for P large enough there is 0 ≤ p ≤ 10A/ε3 + 1 = OA,ε(1) such that
(j, l) + v[1,k+p] is black. By Lemma 7.4, this point lies in a triangle ∆′ ∈ T . As we are
outside E∗, we have

s∆′ < 4A(1 + p)3.

Thus by (7.11), for p′ in the range

p+ 10× 4A(1 + p)3 < p′ ≤ P − 1,

we must have l + l[1,k+p′] > l∆′ , hence we exit ∆′ (and increment the random variable
r). In particular, if

p+ 10× 4A(1 + p)3 + 10A/ε3 + 1 ≤ P − 1,

then we can find

p′ ≤ p+ 10× 4A(1 + p)3 + 10A/ε3 + 1 = Op,A,ε(1)
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such that l + l[1,k+p′] > l∆′ and (j, l) + v[1,k+p] is black (and therefore lies in a new
triangle ∆′′). Iterating this R times, we conclude (if P is sufficiently large depending
on A, ε) that r ≥ R and that tR ≤ P . Choosing P large enough so that all the previous
arguments are justified, the claim (7.67) now follows from (7.66), giving the required
contradiction. This (finally!) concludes the proof of (7.41), and hence Proposition 7.8.
As discussed previously, this implies Propositions 7.3, 7.1, 1.17 and Theorem 1.3.
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Figure 4. The proof of Lemma 7.4. The points connecting (j, l) to
(j, l∗), and from (j, l∗) to (j∗, l∗), are known to be black, while the points
(j, l∗ + 1), (j∗ − 1, l∗) are known to be white. The point (j′, l′) can be in
various locations, as illustrated by the red dots here. From (7.18) one
can obtain that every point in the dashed triangle ∆∗ is black (and every
point in the Case 1 region is weakly black), which can treat the Case 1
locations of (j′, l′) (and also forces (j, l) to lie inside ∆∗). In Case 2, (j′, l′)
can be to the right or left of (j, l∗+1), but in either case one can show that
if (j′, l′) is black, then (j′, l∗ + 1) (displayed here in blue) is weakly black
and hence (j, l∗ + 1) is weakly black and in fact black, a contradiction.
Similarly, in Case 3, (j′, l′) can be above or below (j∗−1, l∗), but in either
case one can show that if (j′, l′) is black, then so (j∗ − 1, l′) (displayed
here in green) is weakly black and hence (j∗ − 1, l∗) is weakly black and
in fact black, again giving a contradiction.
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