Toward Monitoring Fault-Tolerant Embedded
Systems (Extended Abstract)

Alwyn Goodloe and Lee Pike

1 INTRODUCTION

Flight-critical systems for aircraft and spacecraft must
be ultra-reliable and so are designed to be fault-tolerant.
For embedded control systems and data buses, a primary
means for achieving fault-tolerance is hardware replica-
tion to provide redundancy so that the system can sur-
vive random hardware faults of individual components.

Nevertheless, a system may fail to meet its reliability
requirements for one of three reasons: (1) the system
suffers an unexpectedly high number of hardware faults,
(2) hardware faults lead to unexpected system-level fail-
ures, or (3) software or design bugs result in systematic
faults. Indeed, failures may result from a combination
of these reasons (e.g., an unanticipated hardware faults
triggers the execution of fault-management software that
is incorrectly designed, leading to system failure).

A monitor [1], [2] is a runtime verification mechanism
that observes the behavior of a system and detects if it
is consistent with its specified correct behavior. Ultra-
reliable systems stand to benefit from runtime monitors,
if monitors can be constructed to increase their reliability.
However, ultra-reliable systems, which are often dis-
tributed, real-time, fault-tolerant systems, have largely
been ignored by the monitoring community. The chal-
lenges associated with monitoring this class of systems
include the following:

o How to ensure the monitor does not interfere with
the monitored system delivering its services and
meeting its real-time deadlines.

« How to ensure the monitoring infrastructure does
not reduce the reliability of the monitored system.

o How to monitor a fault-tolerant system, since fault-
tolerant systems are distributed to provide replica-
tion.

« How to monitor for faults.

We propose these are all important open research ques-
tions.

In this extended abstract, we motivate the need for
runtime monitoring for ultra-reliable systems. We mo-
tivate this need by first presenting an example of a

Alwyn Goodloe is with the National Institute of Aerospace. Email:
Alwyn.Goodloe@nianet.org.
Lee Pike is with Galois, Inc. Email: leepike@galois.com.

failure in the Space Shuttle’s data processing system.
The system was ostensibly designed with best-practices
in mind yet still managed to suffer a failure. After
presenting the motivating example, we touch on some
of these open questions.

2 FAILURE IN THE SPACE SHUTTLE

The Space Shuttle’s data processing system has four
general purpose computers (GPC) that operate in a re-
dundant set. There are also twenty-three multiplexer de-
multiplexers (MDM) units aboard the orbiter, sixteen of
which are directly connected to the GPCs via redundant
shared busses. Each of these MDMs receives commands
from guidance navigation and control (GNC) running on
the GPCs and acquires the requested data from sensors
attached to it, which is then sent back to the GPCs. In ad-
dition to their role in multiplexing/demultiplexing data,
these MDM units perform analog/digital conversion.

Fig. 1. Shuttle Data Processing System (GPCs and FA2)

The GPCs execute redundancy-management algo-
rithms that include a fault detection, isolation, and recov-
ery (FDIR) function. During the launch of shuttle flight
Space Transportation System 124 (STS-124), there was
a report of a pre-launch failure of the fault diagnosis
software caused by a “non-universal I/O error” in the
second flight aft (FA2) MDM [3], which is polled by the
GPCs as shown in Figure 1. According to reports [3], [4],
the events unfolded as follows:
o A diode failed on the serial multiplexer interface
adapter of the FA2 MDM.

o GPC 4 receives erroneous data from FA2. Each node
votes and views GPC 4 as providing faulty data.
Hence GPC 4 is voted out of the redundant set.

e Three seconds later, GPC 2 also receives erroneous
data from FA2. In this case, GPC 2 is voted out of
the redundant set.

o In accordance with the Space Shuttle flight rules [5],
GPC 2 and GPC 4 are powered down.

o GPC 3 then reads FA2’s built-in test equipment and
determines that it is faulty at which point it too is
removed from redundancy set leaving only GPC 1
at which time engineers terminated the work and
the problem with FA2 was isolated and the unit
replaced.

The above set of events sequentially removed good GPC
nodes, but failed to detect and act on the faulty MDM.

3 BYzZANTINE FAULTS

Based on the motivating example we have just pro-
vided, we discuss approaches to monitoring fault-
tolerant systems.

3.1

Faults can be classified according to the hybrid fault
model of Thambidurai and Park [6]. The classification
is based on the observable behavior of a node, ranging
from easy-to-detect faults, like fail-silent nodes that fail
to respond to pings within a nominal time frame, to
more nefarious faults. A particularly nefarious class of
faults are asymmetric or Byzantine faults in which a node
sends different messages to different receivers when the
expectation is that the node should broadcast the same
message to all receivers [7].

Byzantine faults are often transient rather than perma-
nent, making them difficult to reproduce. For example,
a transmitter failing to drive a signal sufficiently high
or low can produce Byzantine faults in which different
receivers observe a broadcasted message differently; tim-
ing errors in real-time systems can also produce Byzan-
tine faults [8]. In part because of their transience, system
engineers underestimate the probability of Byzantine
faults.

Classifying Faults

3.2 Reconsidering the Space Shuttle Failure

A maximum fault assumption (MFA) for a system char-
acterizes the maximum kind, number, and arrival rate
of faults under which the system is hypothesized to
operate correctly. If the MFA is violated, the system’s
assumptions about its environment are violated, and the
system may behave arbitrarily.

The Space Shuttle incident is not isolated: the prelim-
inary findings on the A330 in-flight upset exhibited an
asymmetric fault [9]. In the case of both the Space Shuttle
and the A330, it appears that the systems were designed
to satisfy a MFA that did not accommodate asymmetric
faults.

It is conceivable (we are speculating here) that the
designers chose a fault-model that excludes asymmetric

faults because the designers judged that the probability
of their occurrence to be so small that the additional
complexity required in a system design intended to
detect and mask such events was unwarranted. Indeed,
in some cases, designs that handle rare faults can in-
crease the probability that less rare faults occur [10]. The
intuition is that fault-tolerance requires redundancy, and
redundancy means more hardware. The more hardware
there is, the more likely some component in the system
will fail. However, it has also been argued that Byzantine
faults, while rare, are much more probable than gener-
ally believed [8]. Indeed, Driscoll et al., describe possible
causes of Byzantine faults over a shared bus [8], which
are possible causes of the Space Shuttle failure.

4 MONITORING ULTRA-RELIABLE SYSTEMS
41

A monitor [1], [2] is a runtime verification mechanism
that observes the behavior of a system and detects if it
is consistent with a given specification. A specification
of a correctness property ¢ is typically expressed in
some specification language and a monitor is constructed
that accepts all traces satisfying ¢. The system may be
a program, hardware, a network, or any combination
thereof. We refer to the monitored system as the system
under observation (SUQO). If the SUO is observed to violate
the specification, an alert is raised. The user or other
software is left to respond to the alert. The state-of-the-
art in the field is represented by the Monitoring and
Checking (MaC) [11] and Monitor Oriented Program-
ming (MOP) [12] projects. The focus of most research in
the area has been on monitoring Java applications such
as detecting deadlocked threads. Two research efforts
investigate monitoring distributed systems [13], [14],
but fault-tolerant, hard real-time systems add additional
complexities. In particular, the monitor itself must not
interfere with the hard real-time deadlines.

Monitors

4.2 Toward Monitoring Faults

A designer’s formulation of a system’s maximum fault
assumption (MFA) is based on a variety of factors in-
cluding knowledge about the operational environment,
reliability of the individual components, expected du-
ration a system is to be fielded, the number of fielded
systems, cost, and so on. Many of these factors are
under-specified at design time (for example, systems are
used well beyond their expected retirement dates or in
unanticipated environments). Because the MFA is chosen
based on incomplete data, it may be too weak. Further-
more, a system’s MFA is built on the assumption that
there are no systematic software faults. Software faults
can dramatically reduce the hypothesized reliability of a
system.

In a fault-tolerant system, the relationship between
software and hardware is subtle. Software that imple-
ments a system’s services can be verified and validated

or monitored at runtime using known techniques. The
behaviors of fault-management software are determined
by the presence of random hardware failures caused by
the environment—indeed, the software can be thought
of as a reactive system that responds to its environment,
where the environment introduces random hardware
faults.

Thus, to know at runtime whether fault-management
software is behaving correctly, one must also know the
status of the hardware faults in the system. So it would
seem that for a monitor to determine the health of the
fault-management software, it must know which hard-
ware faults are present. But detecting hardware faults is
precisely the job of the fault-management software itself!

Rather than “reinventing” the fault-management soft-
ware (which would be prone to the same software errors
as the original) [15], we propose that monitors are well-
suited for fault-detection outside of a system’s MFA. That
is, monitors are suitable for monitoring faults that fall
outside of the ones detected and corrected by the fault-
management software—such as Byzantine faults in the
case of the Shuttle’s data processing system and the A330
in-flight upset.

Constructing such a monitor does not require any
knowledge or interaction with the fault-management
software itself. For example, in the case of the Shuttle’s
data processing system, a separate monitor might poll
each of the GPCs (perhaps on a separate data bus) to
ensure consensus among them. If less than three out of
the four GPCs output different values, the monitor might
note that some failure has occurred. The monitor does
not need to identify the source of failure to diagnose a
fault.

5 CONCLUSION

“Monitoring MFAs” is an open research topic that stands
to improve the reliability of complex legacy systems.
Specific research questions include those mentioned in
the introduction. For example, a monitor should not
interfere with a monitored system’s ability to meet real-
time deadlines. So, special monitoring messages might
be sent over a dedicated monitoring bus, for example.
Likewise, monitors need to be prevented from reduc-
ing the overall reliability of the system. This includes
preventing a monitor from generating false-positives
(provided a raised alarm causes a system-wide reset, for
example). If monitors are attached to the same data bus
as the nodes being monitored, they must be outfitted
with bus guardians, special hardware that ensures a node
does not become a “babbling idiot” that monopolizes
data bus bandwidth. Specific approaches to answering
these questions should be explored and compared.

ACKNOWLEDGMENTS

This work is supported by NASA Contract
NNLOSADI13T from the Aviation Safety Program
Office; Ben Di Vito of the NASA Langley Research

Center has provided general guidance on these efforts.
We would like to thank the workshop reviewers who
provided exceptionally detailed and helpful comments.

REFERENCES

[1] N. Delgado, A. Gates, and S. Roach, “A taxonomy and catalog of
runtime monitoring tools,” IEEE Transactions of Software Engineer-
ing, vol. 30, no. 12, pp. 859-872, 2004.

[2] M. Leucker and C. Schallhart, “A brief account of runtime ver-
ification,” Journal of Logic and Algebraic Programming, 2008, to
Appear.

[3] C. Bergin, “Faulty MDM removed,” NASA Spaceflight.com, May
18 2008, available at http://www.nasaspaceflight.com/2008/05/
sts-124-frr-debate-outstanding-issues-faulty-mdm-removed/.
(Downloaded Nov 28, 2008).

[4] ——, “Sts-126: Super smooth endeavor easing through the
countdown to 1-1,” NASA Spaceflight.com, November 13
2008, available at http://www.nasaspaceflight.com/2008/11/
sts-126-endeavour-easing-through-countdown/. (Downloaded
Feb 3,2009).

[5]1 N. J. E Center, “Space shuttle operational flight rules volume
a, a7-104,” June 2002, available from http://www.jsc.nasa.gov
(Downloaded Nov 28, 2008).

[6] P.Thambidurai and Y.-K. Park, “Interactive consistency with mul-
tiple failure modes,” in 7th Reliable Distributed Systems Symposium,
October 1988, pp. 93-100.

[7] Lamport, Shostak, and Pease, “The Byzantine generals problem,”
ACM Transactions on Programming Languages and Systems, vol. 4,
pp- 382-401, July 1982.

[8] K. Driscoll, B. Hall, H. Sivencrona, and P. Zumsteg, “Byzantine
fault tolerance, from theory to reality,” in The 22nd International
Conference on Computer Safety, Reliability and Security SAFECOMP,
ser. Lecture Notes in Computer Science. Springer, September
2003, pp. 235-248.

[9] Australian Government, “In-flight upset 154 Km west of Lear-
month 7 October 2008 VH-QPA Airbus A330-303,” Australian
Transport Safety Bureau Aviation Occurrence Investigation AO-
2008-70, 2008, available at http:/ /www.atsb.gov.au/publications/
investigation_reports/2008/AAIR/aair200806143.aspx.

[10] D. Powell, “Failure mode assumptions and assumption cover-
age,” in Proceedings of the 22nd International Symposium on Fault
Tolerant Computing. IEEE Press, 1992, pp. 386-395.

[11] M. Kim, M. Viswanathan, H. Ben-Abdallah, S. Kannan, I. Lee,
and O. Sokolsky, “Formally specified monitoring of temporal
properties,” in 11th Euromicro Conference on Real-Time Systems,
1999, pp. 114-122.

[12] F. Chen and G. Rosu, “Mop: An efficient and generic runtime
verification framework,” in Object Oriented Programming, Systems,
Languages, and Applications, 2007, pp. 569-588.

[13] A. Bauer, M. Leucker, and C. Schallhart, “Model-based runtime
analysis of distributed reactive systems,” in Proceedings of the
2006 Australian Software Engineering Conference (ASWEC). Sydney,
Australia: IEEE Computer Society, Apr. 2006.

[14] K. Sen, A. Vardhan, G. Agha, and G. Rosu, “Efficient decentralized
monitoring of safety in distributed systems,” in 6th International
Conference on Software Engineering (ICSE’04), 2004, pp. 418-427.

[15] J. C. Knight and N. G. Leveson, “An experimental evaluation of
the assumption of independence in multiversion programming,”
IEEE Transactions on Software Engineering, vol. 12, pp. 96-109, 1986.

